LieSquareMatrix(n, R)
lie.spad line 109
[edit on github]
LieSquareMatrix(n
, R
) implements the Lie algebra of the n
by n
matrices over the commutative ring R
. The Lie bracket (commutator) of the algebra is given by a*b := (a *$SQMATRIX(n, R) b - b *$SQMATRIX(n, R) a)
, where *$SQMATRIX(n
, R
) is the usual matrix multiplication.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, PositiveInteger) -> %
- from Magma
- alternative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- antiAssociative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- antiCommutative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- apply : (Matrix(R), %) -> %
- from FramedNonAssociativeAlgebra(R)
- associative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- associator : (%, %, %) -> %
- from NonAssociativeRng
- associatorDependence : () -> List(Vector(R)) if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- basis : () -> Vector(%)
- from FramedModule(R)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- coerce : % -> SquareMatrix(n, R)
- from CoercibleTo(SquareMatrix(n, R))
- commutative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- commutator : (%, %) -> %
- from NonAssociativeRng
- conditionsForIdempotents : () -> List(Polynomial(R))
- from FramedNonAssociativeAlgebra(R)
- conditionsForIdempotents : Vector(%) -> List(Polynomial(R))
- from FiniteRankNonAssociativeAlgebra(R)
- convert : SquareMatrix(n, R) -> %
converts a SquareMatrix to a LieSquareMatrix
- convert : Vector(R) -> %
- from FramedModule(R)
- convert : % -> InputForm if R has Finite
- from ConvertibleTo(InputForm)
- convert : % -> Vector(R)
- from FramedModule(R)
- coordinates : Vector(%) -> Matrix(R)
- from FramedModule(R)
- coordinates : (Vector(%), Vector(%)) -> Matrix(R)
- from FiniteRankNonAssociativeAlgebra(R)
- coordinates : % -> Vector(R)
- from FramedModule(R)
- coordinates : (%, Vector(%)) -> Vector(R)
- from FiniteRankNonAssociativeAlgebra(R)
- elt : (%, Integer) -> R
- from FramedNonAssociativeAlgebra(R)
- enumerate : () -> List(%) if R has Finite
- from Finite
- flexible? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- hash : % -> SingleInteger if R has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if R has Hashable
- from Hashable
- index : PositiveInteger -> % if R has Finite
- from Finite
- jacobiIdentity? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- jordanAdmissible? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- jordanAlgebra? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- latex : % -> String
- from SetCategory
- leftAlternative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- leftCharacteristicPolynomial : % -> SparseUnivariatePolynomial(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftDiscriminant : () -> R
- from FramedNonAssociativeAlgebra(R)
- leftDiscriminant : Vector(%) -> R
- from FiniteRankNonAssociativeAlgebra(R)
- leftMinimalPolynomial : % -> SparseUnivariatePolynomial(R) if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- leftNorm : % -> R
- from FiniteRankNonAssociativeAlgebra(R)
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRankPolynomial : () -> SparseUnivariatePolynomial(Polynomial(R)) if R has Field
- from FramedNonAssociativeAlgebra(R)
- leftRecip : % -> Union(%, "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- leftRegularRepresentation : % -> Matrix(R)
- from FramedNonAssociativeAlgebra(R)
- leftRegularRepresentation : (%, Vector(%)) -> Matrix(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftTrace : % -> R
- from FiniteRankNonAssociativeAlgebra(R)
- leftTraceMatrix : () -> Matrix(R)
- from FramedNonAssociativeAlgebra(R)
- leftTraceMatrix : Vector(%) -> Matrix(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftUnit : () -> Union(%, "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- leftUnits : () -> Union(Record(particular : %, basis : List(%)), "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- lieAdmissible? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- lieAlgebra? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- lookup : % -> PositiveInteger if R has Finite
- from Finite
- noncommutativeJordanAlgebra? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(R)
- powerAssociative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- random : () -> % if R has Finite
- from Finite
- rank : () -> PositiveInteger
- from FiniteRankNonAssociativeAlgebra(R)
- recip : % -> Union(%, "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- represents : Vector(R) -> %
- from FramedModule(R)
- represents : (Vector(R), Vector(%)) -> %
- from FiniteRankNonAssociativeAlgebra(R)
- rightAlternative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- rightCharacteristicPolynomial : % -> SparseUnivariatePolynomial(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightDiscriminant : () -> R
- from FramedNonAssociativeAlgebra(R)
- rightDiscriminant : Vector(%) -> R
- from FiniteRankNonAssociativeAlgebra(R)
- rightMinimalPolynomial : % -> SparseUnivariatePolynomial(R) if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- rightNorm : % -> R
- from FiniteRankNonAssociativeAlgebra(R)
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRankPolynomial : () -> SparseUnivariatePolynomial(Polynomial(R)) if R has Field
- from FramedNonAssociativeAlgebra(R)
- rightRecip : % -> Union(%, "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- rightRegularRepresentation : % -> Matrix(R)
- from FramedNonAssociativeAlgebra(R)
- rightRegularRepresentation : (%, Vector(%)) -> Matrix(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightTrace : % -> R
- from FiniteRankNonAssociativeAlgebra(R)
- rightTraceMatrix : () -> Matrix(R)
- from FramedNonAssociativeAlgebra(R)
- rightTraceMatrix : Vector(%) -> Matrix(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightUnit : () -> Union(%, "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- rightUnits : () -> Union(Record(particular : %, basis : List(%)), "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- sample : () -> %
- from AbelianMonoid
- size : () -> NonNegativeInteger if R has Finite
- from Finite
- smaller? : (%, %) -> Boolean if R has Finite
- from Comparable
- someBasis : () -> Vector(%)
- from FiniteRankNonAssociativeAlgebra(R)
- structuralConstants : () -> Vector(Matrix(R))
- from FramedNonAssociativeAlgebra(R)
- structuralConstants : Vector(%) -> Vector(Matrix(R))
- from FiniteRankNonAssociativeAlgebra(R)
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit : () -> Union(%, "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Comparable
ConvertibleTo(InputForm)
FiniteRankNonAssociativeAlgebra(R)
AbelianMonoid
BiModule(R, R)
NonAssociativeAlgebra(R)
AbelianGroup
Module(R)
LeftModule(R)
SetCategory
CoercibleTo(OutputForm)
FramedModule(R)
Magma
unitsKnown
AbelianSemiGroup
FramedNonAssociativeAlgebra(R)
CoercibleTo(SquareMatrix(n, R))
CancellationAbelianMonoid
RightModule(R)
NonAssociativeRng
NonAssociativeSemiRng
Hashable
Finite
BasicType