LieSquareMatrix(n, R)

lie.spad line 109 [edit on github]

LieSquareMatrix(n, R) implements the Lie algebra of the n by n matrices over the commutative ring R. The Lie bracket (commutator) of the algebra is given by a*b := (a *$SQMATRIX(n, R) b - b *$SQMATRIX(n, R) a), where *$SQMATRIX(n, R) is the usual matrix multiplication.

* : (%, %) -> %
from Magma
* : (%, R) -> %
from RightModule(R)
* : (R, %) -> %
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
= : (%, %) -> Boolean
from BasicType
^ : (%, PositiveInteger) -> %
from Magma
alternative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
antiAssociative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
antiCommutative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
apply : (Matrix(R), %) -> %
from FramedNonAssociativeAlgebra(R)
associative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
associator : (%, %, %) -> %
from NonAssociativeRng
associatorDependence : () -> List(Vector(R)) if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
basis : () -> Vector(%)
from FramedModule(R)
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
coerce : % -> SquareMatrix(n, R)
from CoercibleTo(SquareMatrix(n, R))
commutative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
commutator : (%, %) -> %
from NonAssociativeRng
conditionsForIdempotents : () -> List(Polynomial(R))
from FramedNonAssociativeAlgebra(R)
conditionsForIdempotents : Vector(%) -> List(Polynomial(R))
from FiniteRankNonAssociativeAlgebra(R)
convert : SquareMatrix(n, R) -> %

converts a SquareMatrix to a LieSquareMatrix

convert : Vector(R) -> %
from FramedModule(R)
convert : % -> InputForm if R has Finite
from ConvertibleTo(InputForm)
convert : % -> Vector(R)
from FramedModule(R)
coordinates : Vector(%) -> Matrix(R)
from FramedModule(R)
coordinates : (Vector(%), Vector(%)) -> Matrix(R)
from FiniteRankNonAssociativeAlgebra(R)
coordinates : % -> Vector(R)
from FramedModule(R)
coordinates : (%, Vector(%)) -> Vector(R)
from FiniteRankNonAssociativeAlgebra(R)
elt : (%, Integer) -> R
from FramedNonAssociativeAlgebra(R)
enumerate : () -> List(%) if R has Finite
from Finite
flexible? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
hash : % -> SingleInteger if R has Hashable
from Hashable
hashUpdate! : (HashState, %) -> HashState if R has Hashable
from Hashable
index : PositiveInteger -> % if R has Finite
from Finite
jacobiIdentity? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
jordanAdmissible? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
jordanAlgebra? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
latex : % -> String
from SetCategory
leftAlternative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
leftCharacteristicPolynomial : % -> SparseUnivariatePolynomial(R)
from FiniteRankNonAssociativeAlgebra(R)
leftDiscriminant : () -> R
from FramedNonAssociativeAlgebra(R)
leftDiscriminant : Vector(%) -> R
from FiniteRankNonAssociativeAlgebra(R)
leftMinimalPolynomial : % -> SparseUnivariatePolynomial(R) if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
leftNorm : % -> R
from FiniteRankNonAssociativeAlgebra(R)
leftPower : (%, PositiveInteger) -> %
from Magma
leftRankPolynomial : () -> SparseUnivariatePolynomial(Polynomial(R)) if R has Field
from FramedNonAssociativeAlgebra(R)
leftRecip : % -> Union(%, "failed") if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
leftRegularRepresentation : % -> Matrix(R)
from FramedNonAssociativeAlgebra(R)
leftRegularRepresentation : (%, Vector(%)) -> Matrix(R)
from FiniteRankNonAssociativeAlgebra(R)
leftTrace : % -> R
from FiniteRankNonAssociativeAlgebra(R)
leftTraceMatrix : () -> Matrix(R)
from FramedNonAssociativeAlgebra(R)
leftTraceMatrix : Vector(%) -> Matrix(R)
from FiniteRankNonAssociativeAlgebra(R)
leftUnit : () -> Union(%, "failed") if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
leftUnits : () -> Union(Record(particular : %, basis : List(%)), "failed") if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
lieAdmissible? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
lieAlgebra? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
lookup : % -> PositiveInteger if R has Finite
from Finite
noncommutativeJordanAlgebra? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(R)
powerAssociative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
random : () -> % if R has Finite
from Finite
rank : () -> PositiveInteger
from FiniteRankNonAssociativeAlgebra(R)
recip : % -> Union(%, "failed") if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
represents : Vector(R) -> %
from FramedModule(R)
represents : (Vector(R), Vector(%)) -> %
from FiniteRankNonAssociativeAlgebra(R)
rightAlternative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
rightCharacteristicPolynomial : % -> SparseUnivariatePolynomial(R)
from FiniteRankNonAssociativeAlgebra(R)
rightDiscriminant : () -> R
from FramedNonAssociativeAlgebra(R)
rightDiscriminant : Vector(%) -> R
from FiniteRankNonAssociativeAlgebra(R)
rightMinimalPolynomial : % -> SparseUnivariatePolynomial(R) if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
rightNorm : % -> R
from FiniteRankNonAssociativeAlgebra(R)
rightPower : (%, PositiveInteger) -> %
from Magma
rightRankPolynomial : () -> SparseUnivariatePolynomial(Polynomial(R)) if R has Field
from FramedNonAssociativeAlgebra(R)
rightRecip : % -> Union(%, "failed") if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
rightRegularRepresentation : % -> Matrix(R)
from FramedNonAssociativeAlgebra(R)
rightRegularRepresentation : (%, Vector(%)) -> Matrix(R)
from FiniteRankNonAssociativeAlgebra(R)
rightTrace : % -> R
from FiniteRankNonAssociativeAlgebra(R)
rightTraceMatrix : () -> Matrix(R)
from FramedNonAssociativeAlgebra(R)
rightTraceMatrix : Vector(%) -> Matrix(R)
from FiniteRankNonAssociativeAlgebra(R)
rightUnit : () -> Union(%, "failed") if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
rightUnits : () -> Union(Record(particular : %, basis : List(%)), "failed") if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
sample : () -> %
from AbelianMonoid
size : () -> NonNegativeInteger if R has Finite
from Finite
smaller? : (%, %) -> Boolean if R has Finite
from Comparable
someBasis : () -> Vector(%)
from FiniteRankNonAssociativeAlgebra(R)
structuralConstants : () -> Vector(Matrix(R))
from FramedNonAssociativeAlgebra(R)
structuralConstants : Vector(%) -> Vector(Matrix(R))
from FiniteRankNonAssociativeAlgebra(R)
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
unit : () -> Union(%, "failed") if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

Comparable

ConvertibleTo(InputForm)

FiniteRankNonAssociativeAlgebra(R)

AbelianMonoid

BiModule(R, R)

NonAssociativeAlgebra(R)

AbelianGroup

Module(R)

LeftModule(R)

SetCategory

CoercibleTo(OutputForm)

FramedModule(R)

Magma

unitsKnown

AbelianSemiGroup

FramedNonAssociativeAlgebra(R)

CoercibleTo(SquareMatrix(n, R))

CancellationAbelianMonoid

RightModule(R)

NonAssociativeRng

NonAssociativeSemiRng

Hashable

Finite

BasicType