SquareMatrix(ndim, R)
matrix.spad line 313
[edit on github]
SquareMatrix is a matrix domain of square matrices, where the number of rows (= number of columns) is a parameter of the type.
- # : % -> NonNegativeInteger
- from Aggregate
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer) and R has Ring
- from RightModule(Integer)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> % if R has AbelianGroup or % has AbelianGroup
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- * : (%, DirectProduct(ndim, R)) -> DirectProduct(ndim, R)
- from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- * : (DirectProduct(ndim, R), %) -> DirectProduct(ndim, R)
- from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> % if R has AbelianGroup or % has AbelianGroup
- from AbelianGroup
- - : (%, %) -> % if R has AbelianGroup or % has AbelianGroup
- from AbelianGroup
- / : (%, R) -> % if R has Field
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> % if R has SemiRing
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : % -> % if R has DifferentialRing and R has Ring
- from DifferentialRing
- D : (%, List(Symbol)) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, Mapping(R, R)) -> % if R has Ring
- from DifferentialExtension(R)
- D : (%, Mapping(R, R), NonNegativeInteger) -> % if R has Ring
- from DifferentialExtension(R)
- D : (%, NonNegativeInteger) -> % if R has DifferentialRing and R has Ring
- from DifferentialRing
- D : (%, Symbol) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- Pfaffian : % -> R if R has CommutativeRing
- from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- ^ : (%, Integer) -> % if R has Field
- from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- ^ : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean if R has Ring
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- antisymmetric? : % -> Boolean
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- any? : (Mapping(Boolean, R), %) -> Boolean
- from HomogeneousAggregate(R)
- associator : (%, %, %) -> % if R has Ring
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger if R has Ring
- from NonAssociativeRing
- coerce : R -> %
- from Algebra(R)
- coerce : Fraction(Integer) -> % if R has RetractableTo(Fraction(Integer))
- from CoercibleFrom(Fraction(Integer))
- coerce : Integer -> % if R has RetractableTo(Integer) or R has Ring
- from NonAssociativeRing
- coerce : % -> Matrix(R)
coerce(m)
converts a matrix of type SquareMatrix to a matrix of type Matrix.
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- column : (%, Integer) -> DirectProduct(ndim, R)
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- columnSpace : % -> List(DirectProduct(ndim, R)) if R has EuclideanDomain
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- commutator : (%, %) -> % if R has Ring
- from NonAssociativeRng
- convert : % -> InputForm if R has ConvertibleTo(InputForm)
- from ConvertibleTo(InputForm)
- copy : % -> %
- from Aggregate
- count : (R, %) -> NonNegativeInteger
- from HomogeneousAggregate(R)
- count : (Mapping(Boolean, R), %) -> NonNegativeInteger
- from HomogeneousAggregate(R)
- determinant : % -> R if R has CommutativeRing
- from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- diagonal : % -> DirectProduct(ndim, R)
- from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- diagonal? : % -> Boolean
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- diagonalMatrix : List(R) -> %
- from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- diagonalProduct : % -> R
- from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- differentiate : % -> % if R has DifferentialRing and R has Ring
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Mapping(R, R)) -> % if R has Ring
- from DifferentialExtension(R)
- differentiate : (%, Mapping(R, R), NonNegativeInteger) -> % if R has Ring
- from DifferentialExtension(R)
- differentiate : (%, NonNegativeInteger) -> % if R has DifferentialRing and R has Ring
- from DifferentialRing
- differentiate : (%, Symbol) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- elt : (%, Integer, Integer) -> R
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- elt : (%, Integer, Integer, R) -> R
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- empty : () -> %
- from Aggregate
- empty? : % -> Boolean
- from Aggregate
- enumerate : () -> List(%) if R has Finite
- from Finite
- eq? : (%, %) -> Boolean
- from Aggregate
- eval : (%, R, R) -> % if R has Evalable(R)
- from InnerEvalable(R, R)
- eval : (%, Equation(R)) -> % if R has Evalable(R)
- from Evalable(R)
- eval : (%, List(R), List(R)) -> % if R has Evalable(R)
- from InnerEvalable(R, R)
- eval : (%, List(Equation(R))) -> % if R has Evalable(R)
- from Evalable(R)
- every? : (Mapping(Boolean, R), %) -> Boolean
- from HomogeneousAggregate(R)
- exquo : (%, R) -> Union(%, "failed") if R has IntegralDomain
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- hash : % -> SingleInteger if R has Finite
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if R has Finite
- from Hashable
- index : PositiveInteger -> % if R has Finite
- from Finite
- inverse : % -> Union(%, "failed") if R has Field
- from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- less? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- listOfLists : % -> List(List(R))
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- lookup : % -> PositiveInteger if R has Finite
- from Finite
- map : (Mapping(R, R), %) -> %
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- map : (Mapping(R, R, R), %, %) -> %
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- matrix : List(List(R)) -> %
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- max : % -> R if R has OrderedSet
- from HomogeneousAggregate(R)
- max : (Mapping(Boolean, R, R), %) -> R
- from HomogeneousAggregate(R)
- maxColIndex : % -> Integer
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- maxRowIndex : % -> Integer
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- member? : (R, %) -> Boolean
- from HomogeneousAggregate(R)
- members : % -> List(R)
- from HomogeneousAggregate(R)
- min : % -> R if R has OrderedSet
- from HomogeneousAggregate(R)
- minColIndex : % -> Integer
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- minRowIndex : % -> Integer
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- minordet : % -> R if R has CommutativeRing
- from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- more? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- ncols : % -> NonNegativeInteger
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- nrows : % -> NonNegativeInteger
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- nullSpace : % -> List(DirectProduct(ndim, R)) if R has IntegralDomain
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- nullity : % -> NonNegativeInteger if R has IntegralDomain
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- one? : % -> Boolean if R has SemiRing
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- parts : % -> List(R)
- from HomogeneousAggregate(R)
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing
- from NonAssociativeAlgebra(R)
- qelt : (%, Integer, Integer) -> R
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- random : () -> % if R has Finite
- from Finite
- rank : % -> NonNegativeInteger if R has IntegralDomain
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- recip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- reducedSystem : Matrix(%) -> Matrix(R) if R has Ring
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer) and R has Ring
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R)) if R has Ring
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer) and R has Ring
- from LinearlyExplicitOver(Integer)
- retract : % -> R
- from RetractableTo(R)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- row : (%, Integer) -> DirectProduct(ndim, R)
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- rowEchelon : % -> % if R has EuclideanDomain
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- sample : () -> %
- from AbelianMonoid
- scalarMatrix : R -> %
- from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- size : () -> NonNegativeInteger if R has Finite
- from Finite
- size? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- smaller? : (%, %) -> Boolean if R has Finite
- from Comparable
- square? : % -> Boolean
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- squareMatrix : Matrix(R) -> %
squareMatrix(m)
converts a matrix of type Matrix to a matrix of type SquareMatrix.
- subtractIfCan : (%, %) -> Union(%, "failed") if R has AbelianGroup or % has AbelianGroup
- from CancellationAbelianMonoid
- symmetric? : % -> Boolean
- from RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- trace : % -> R
- from SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
- transpose : % -> %
transpose(m)
returns the transpose of the matrix m
.
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
NonAssociativeSemiRing
LeftModule(R)
Evalable(R)
ConvertibleTo(InputForm)
Rng
CoercibleFrom(Integer)
TwoSidedRecip
FullyRetractableTo(R)
SemiRing
unitsKnown
FullyLinearlyExplicitOver(R)
RetractableTo(Fraction(Integer))
Magma
SemiGroup
LeftModule(%)
NonAssociativeRing
finiteAggregate
PartialDifferentialRing(Symbol)
Module(R)
BiModule(%, %)
DifferentialRing
BiModule(R, R)
Algebra(R)
RightModule(R)
CoercibleTo(Matrix(R))
InnerEvalable(R, R)
NonAssociativeSemiRng
CancellationAbelianMonoid
RetractableTo(Integer)
SetCategory
RectangularMatrixCategory(ndim, ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
AbelianMonoid
MagmaWithUnit
Comparable
RightModule(%)
Hashable
HomogeneousAggregate(R)
CoercibleTo(OutputForm)
LinearlyExplicitOver(Integer)
DifferentialExtension(R)
Ring
SemiRng
Monoid
Finite
Aggregate
BasicType
RightModule(Integer)
AbelianSemiGroup
CoercibleFrom(Fraction(Integer))
LinearlyExplicitOver(R)
NonAssociativeRng
CoercibleFrom(R)
RetractableTo(R)
AbelianGroup
SquareMatrixCategory(ndim, R, DirectProduct(ndim, R), DirectProduct(ndim, R))
NonAssociativeAlgebra(R)