SquareMatrixCategory(ndim, R, Row, Col)
matcat.spad line 908
[edit on github]
SquareMatrixCategory is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col.
- # : % -> NonNegativeInteger
- from Aggregate
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer) and R has Ring
- from RightModule(Integer)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> % if % has AbelianGroup or R has AbelianGroup
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- * : (%, Col) -> Col
x * c
is the product of the matrix x
and the column vector c
. Error: if the dimensions are incompatible.
- * : (Row, %) -> Row
r * x
is the product of the row vector r
and the matrix x
. Error: if the dimensions are incompatible.
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> % if % has AbelianGroup or R has AbelianGroup
- from AbelianGroup
- - : (%, %) -> % if % has AbelianGroup or R has AbelianGroup
- from AbelianGroup
- / : (%, R) -> % if R has Field
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> % if R has SemiRing
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : % -> % if R has DifferentialRing and R has Ring
- from DifferentialRing
- D : (%, List(Symbol)) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, Mapping(R, R)) -> % if R has Ring
- from DifferentialExtension(R)
- D : (%, Mapping(R, R), NonNegativeInteger) -> % if R has Ring
- from DifferentialExtension(R)
- D : (%, NonNegativeInteger) -> % if R has DifferentialRing and R has Ring
- from DifferentialRing
- D : (%, Symbol) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- Pfaffian : % -> R if R has CommutativeRing
Pfaffian(m)
returns the Pfaffian of the matrix m
. Error: if the matrix is not antisymmetric.
- ^ : (%, Integer) -> % if R has Field
m^n
computes an integral power of the matrix m
. Error: if the matrix is not invertible.
- ^ : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean if R has Ring
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- antisymmetric? : % -> Boolean
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- any? : (Mapping(Boolean, R), %) -> Boolean
- from HomogeneousAggregate(R)
- associator : (%, %, %) -> % if R has Ring
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger if R has Ring
- from NonAssociativeRing
- coerce : R -> %
- from Algebra(R)
- coerce : Fraction(Integer) -> % if R has RetractableTo(Fraction(Integer))
- from CoercibleFrom(Fraction(Integer))
- coerce : Integer -> % if R has Ring or R has RetractableTo(Integer)
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- column : (%, Integer) -> Col
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- columnSpace : % -> List(Col) if R has EuclideanDomain
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- commutator : (%, %) -> % if R has Ring
- from NonAssociativeRng
- convert : % -> InputForm if R has Finite
- from ConvertibleTo(InputForm)
- copy : % -> %
- from Aggregate
- count : (R, %) -> NonNegativeInteger
- from HomogeneousAggregate(R)
- count : (Mapping(Boolean, R), %) -> NonNegativeInteger
- from HomogeneousAggregate(R)
- determinant : % -> R if R has CommutativeRing
determinant(m)
returns the determinant of the matrix m
.
- diagonal : % -> Row
diagonal(m)
returns a row consisting of the elements on the diagonal of the matrix m
.
- diagonal? : % -> Boolean
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- diagonalMatrix : List(R) -> %
diagonalMatrix(l)
returns a diagonal matrix with the elements of l
on the diagonal.
- diagonalProduct : % -> R
diagonalProduct(m)
returns the product of the elements on the diagonal of the matrix m
.
- differentiate : % -> % if R has DifferentialRing and R has Ring
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Mapping(R, R)) -> % if R has Ring
- from DifferentialExtension(R)
- differentiate : (%, Mapping(R, R), NonNegativeInteger) -> % if R has Ring
- from DifferentialExtension(R)
- differentiate : (%, NonNegativeInteger) -> % if R has DifferentialRing and R has Ring
- from DifferentialRing
- differentiate : (%, Symbol) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing(Symbol) and R has Ring
- from PartialDifferentialRing(Symbol)
- elt : (%, Integer, Integer) -> R
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- elt : (%, Integer, Integer, R) -> R
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- empty : () -> %
- from Aggregate
- empty? : % -> Boolean
- from Aggregate
- enumerate : () -> List(%) if R has Finite
- from Finite
- eq? : (%, %) -> Boolean
- from Aggregate
- eval : (%, R, R) -> % if R has Evalable(R)
- from InnerEvalable(R, R)
- eval : (%, Equation(R)) -> % if R has Evalable(R)
- from Evalable(R)
- eval : (%, List(R), List(R)) -> % if R has Evalable(R)
- from InnerEvalable(R, R)
- eval : (%, List(Equation(R))) -> % if R has Evalable(R)
- from Evalable(R)
- every? : (Mapping(Boolean, R), %) -> Boolean
- from HomogeneousAggregate(R)
- exquo : (%, R) -> Union(%, "failed") if R has IntegralDomain
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- hash : % -> SingleInteger if R has Finite
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if R has Finite
- from Hashable
- index : PositiveInteger -> % if R has Finite
- from Finite
- inverse : % -> Union(%, "failed") if R has Field
inverse(m)
returns the inverse of the matrix m
, if that matrix is invertible and returns "failed" otherwise.
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- less? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- listOfLists : % -> List(List(R))
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- lookup : % -> PositiveInteger if R has Finite
- from Finite
- map : (Mapping(R, R), %) -> %
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- map : (Mapping(R, R, R), %, %) -> %
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- map! : (Mapping(R, R), %) -> % if % has shallowlyMutable
- from HomogeneousAggregate(R)
- matrix : List(List(R)) -> %
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- max : % -> R if R has OrderedSet
- from HomogeneousAggregate(R)
- max : (Mapping(Boolean, R, R), %) -> R
- from HomogeneousAggregate(R)
- maxColIndex : % -> Integer
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- maxRowIndex : % -> Integer
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- member? : (R, %) -> Boolean
- from HomogeneousAggregate(R)
- members : % -> List(R)
- from HomogeneousAggregate(R)
- min : % -> R if R has OrderedSet
- from HomogeneousAggregate(R)
- minColIndex : % -> Integer
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- minRowIndex : % -> Integer
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- minordet : % -> R if R has CommutativeRing
minordet(m)
computes the determinant of the matrix m
using minors.
- more? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- ncols : % -> NonNegativeInteger
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- nrows : % -> NonNegativeInteger
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- nullSpace : % -> List(Col) if R has IntegralDomain
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- nullity : % -> NonNegativeInteger if R has IntegralDomain
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- one? : % -> Boolean if R has SemiRing
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- parts : % -> List(R)
- from HomogeneousAggregate(R)
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing
- from NonAssociativeAlgebra(R)
- qelt : (%, Integer, Integer) -> R
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- random : () -> % if R has Finite
- from Finite
- rank : % -> NonNegativeInteger if R has IntegralDomain
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- recip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- reducedSystem : Matrix(%) -> Matrix(R) if R has Ring
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer) and R has Ring
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R)) if R has Ring
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer) and R has Ring
- from LinearlyExplicitOver(Integer)
- retract : % -> R
- from RetractableTo(R)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- row : (%, Integer) -> Row
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- rowEchelon : % -> % if R has EuclideanDomain
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- sample : () -> %
- from AbelianMonoid
- scalarMatrix : R -> %
scalarMatrix(r)
returns an n
-by-n
matrix with r
's
on the diagonal and zeroes elsewhere.
- size : () -> NonNegativeInteger if R has Finite
- from Finite
- size? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- smaller? : (%, %) -> Boolean if R has Finite
- from Comparable
- square? : % -> Boolean
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- subtractIfCan : (%, %) -> Union(%, "failed") if % has AbelianGroup or R has AbelianGroup
- from CancellationAbelianMonoid
- symmetric? : % -> Boolean
- from RectangularMatrixCategory(ndim, ndim, R, Row, Col)
- trace : % -> R
trace(m)
returns the trace of the matrix m
. this is the sum of the elements on the diagonal of the matrix m
.
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
NonAssociativeSemiRing
LeftModule(R)
LinearlyExplicitOver(R)
Evalable(R)
ConvertibleTo(InputForm)
Rng
CoercibleFrom(Integer)
TwoSidedRecip
FullyRetractableTo(R)
SemiRing
unitsKnown
FullyLinearlyExplicitOver(R)
MagmaWithUnit
LinearlyExplicitOver(Integer)
Magma
SemiGroup
LeftModule(%)
NonAssociativeRing
finiteAggregate
PartialDifferentialRing(Symbol)
Module(R)
BiModule(%, %)
CoercibleFrom(Fraction(Integer))
DifferentialRing
BiModule(R, R)
Algebra(R)
RightModule(R)
InnerEvalable(R, R)
NonAssociativeSemiRng
Aggregate
CancellationAbelianMonoid
RetractableTo(Integer)
RectangularMatrixCategory(ndim, ndim, R, Row, Col)
AbelianMonoid
RetractableTo(Fraction(Integer))
Comparable
RightModule(%)
Hashable
HomogeneousAggregate(R)
CoercibleTo(OutputForm)
DifferentialExtension(R)
SemiRng
Monoid
Finite
BasicType
Ring
RightModule(Integer)
AbelianSemiGroup
SetCategory
NonAssociativeRng
CoercibleFrom(R)
RetractableTo(R)
AbelianGroup
NonAssociativeAlgebra(R)