LocalAlgebra(A, R)
fraction.spad line 55
[edit on github]
LocalAlgebra produces the localization of an algebra, i.e. fractions whose numerators come from some R
algebra.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, R) -> %
x / d
divides the element x
by d
.
- / : (A, R) -> %
a / d
divides the element a
by d
.
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- < : (%, %) -> Boolean if A has OrderedRing
- from PartialOrder
- <= : (%, %) -> Boolean if A has OrderedRing
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean if A has OrderedRing
- from PartialOrder
- >= : (%, %) -> Boolean if A has OrderedRing
- from PartialOrder
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- abs : % -> % if A has OrderedRing
- from OrderedRing
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : R -> %
- from Algebra(R)
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- denom : % -> R
denom x
returns the denominator of x
.
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- max : (%, %) -> % if A has OrderedRing
- from OrderedSet
- min : (%, %) -> % if A has OrderedRing
- from OrderedSet
- negative? : % -> Boolean if A has OrderedRing
- from OrderedRing
- numer : % -> A
numer x
returns the numerator of x
.
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(R)
- positive? : % -> Boolean if A has OrderedRing
- from OrderedRing
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- sign : % -> Integer if A has OrderedRing
- from OrderedRing
- smaller? : (%, %) -> Boolean if A has OrderedRing
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Comparable
OrderedAbelianSemiGroup
RightModule(%)
Monoid
Algebra(R)
AbelianMonoid
BiModule(R, R)
NonAssociativeAlgebra(R)
CancellationAbelianMonoid
OrderedSet
MagmaWithUnit
NonAssociativeRing
AbelianGroup
LeftModule(R)
LeftModule(%)
SetCategory
Rng
AbelianSemiGroup
Magma
SemiGroup
OrderedAbelianMonoid
PartialOrder
BiModule(%, %)
unitsKnown
CoercibleTo(OutputForm)
OrderedCancellationAbelianMonoid
NonAssociativeSemiRing
RightModule(R)
OrderedAbelianGroup
OrderedRing
Module(R)
NonAssociativeRng
Ring
SemiRng
NonAssociativeSemiRng
CharacteristicZero
BasicType
SemiRing