LocalAlgebra(A, R)

fraction.spad line 55 [edit on github]

LocalAlgebra produces the localization of an algebra, i.e. fractions whose numerators come from some R algebra.

* : (%, %) -> %
from Magma
* : (%, R) -> %
from RightModule(R)
* : (R, %) -> %
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, R) -> %

x / d divides the element x by d.

/ : (A, R) -> %

a / d divides the element a by d.

0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
< : (%, %) -> Boolean if A has OrderedRing
from PartialOrder
<= : (%, %) -> Boolean if A has OrderedRing
from PartialOrder
= : (%, %) -> Boolean
from BasicType
> : (%, %) -> Boolean if A has OrderedRing
from PartialOrder
>= : (%, %) -> Boolean if A has OrderedRing
from PartialOrder
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
abs : % -> % if A has OrderedRing
from OrderedRing
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : R -> %
from Algebra(R)
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
denom : % -> R

denom x returns the denominator of x.

latex : % -> String
from SetCategory
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
max : (%, %) -> % if A has OrderedRing
from OrderedSet
min : (%, %) -> % if A has OrderedRing
from OrderedSet
negative? : % -> Boolean if A has OrderedRing
from OrderedRing
numer : % -> A

numer x returns the numerator of x.

one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(R)
positive? : % -> Boolean if A has OrderedRing
from OrderedRing
recip : % -> Union(%, "failed")
from MagmaWithUnit
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
sign : % -> Integer if A has OrderedRing
from OrderedRing
smaller? : (%, %) -> Boolean if A has OrderedRing
from Comparable
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

Comparable

OrderedAbelianSemiGroup

RightModule(%)

Monoid

Algebra(R)

AbelianMonoid

BiModule(R, R)

NonAssociativeAlgebra(R)

CancellationAbelianMonoid

OrderedSet

MagmaWithUnit

NonAssociativeRing

AbelianGroup

LeftModule(R)

LeftModule(%)

SetCategory

Rng

AbelianSemiGroup

Magma

SemiGroup

OrderedAbelianMonoid

PartialOrder

BiModule(%, %)

unitsKnown

CoercibleTo(OutputForm)

OrderedCancellationAbelianMonoid

NonAssociativeSemiRing

RightModule(R)

OrderedAbelianGroup

OrderedRing

Module(R)

NonAssociativeRng

Ring

SemiRng

NonAssociativeSemiRng

CharacteristicZero

BasicType

SemiRing