AlgebraGivenByStructuralConstants(R, n, ls, gamma)

naalg.spad line 1 [edit on github]

AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring, given by the structural constants gamma with respect to a fixed basis [a1, .., an], where gamma is an n-vector of n by n matrices [(gammaijk) for k in 1..rank()] defined by ai * aj = gammaij1 * a1 + ... + gammaijn * an. The symbols for the fixed basis have to be given as a list of symbols.

* : (%, %) -> %
from Magma
* : (%, R) -> %
from RightModule(R)
* : (R, %) -> %
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
* : (SquareMatrix(n, R), %) -> %
from LeftModule(SquareMatrix(n, R))
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
= : (%, %) -> Boolean
from BasicType
^ : (%, PositiveInteger) -> %
from Magma
alternative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
antiAssociative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
antiCommutative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
apply : (Matrix(R), %) -> %
from FramedNonAssociativeAlgebra(R)
associative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
associator : (%, %, %) -> %
from NonAssociativeRng
associatorDependence : () -> List(Vector(R)) if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
basis : () -> Vector(%)
from FramedModule(R)
coefficient : (%, OrderedVariableList(ls)) -> R
from FreeModuleCategory(R, OrderedVariableList(ls))
coefficients : % -> List(R)
from FreeModuleCategory(R, OrderedVariableList(ls))
coerce : Vector(R) -> %

coerce(v) converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.

coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
commutator : (%, %) -> %
from NonAssociativeRng
conditionsForIdempotents : () -> List(Polynomial(R))
from FramedNonAssociativeAlgebra(R)
conditionsForIdempotents : Vector(%) -> List(Polynomial(R))
from FiniteRankNonAssociativeAlgebra(R)
construct : List(Record(k : OrderedVariableList(ls), c : R)) -> %
from IndexedProductCategory(R, OrderedVariableList(ls))
constructOrdered : List(Record(k : OrderedVariableList(ls), c : R)) -> %
from IndexedProductCategory(R, OrderedVariableList(ls))
convert : Vector(R) -> %
from FramedModule(R)
convert : % -> InputForm if R has Finite
from ConvertibleTo(InputForm)
convert : % -> Vector(R)
from FramedModule(R)
coordinates : Vector(%) -> Matrix(R)
from FramedModule(R)
coordinates : (Vector(%), Vector(%)) -> Matrix(R)
from FiniteRankNonAssociativeAlgebra(R)
coordinates : % -> Vector(R)
from FramedModule(R)
coordinates : (%, Vector(%)) -> Vector(R)
from FiniteRankNonAssociativeAlgebra(R)
elt : (%, Integer) -> R
from FramedNonAssociativeAlgebra(R)
enumerate : () -> List(%) if R has Finite
from Finite
flexible? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
hash : % -> SingleInteger if R has Hashable
from Hashable
hashUpdate! : (HashState, %) -> HashState if R has Hashable
from Hashable
index : PositiveInteger -> % if R has Finite
from Finite
jacobiIdentity? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
jordanAdmissible? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
jordanAlgebra? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
latex : % -> String
from SetCategory
leadingCoefficient : % -> R
from IndexedProductCategory(R, OrderedVariableList(ls))
leadingMonomial : % -> %
from IndexedProductCategory(R, OrderedVariableList(ls))
leadingSupport : % -> OrderedVariableList(ls)
from IndexedProductCategory(R, OrderedVariableList(ls))
leadingTerm : % -> Record(k : OrderedVariableList(ls), c : R)
from IndexedProductCategory(R, OrderedVariableList(ls))
leftAlternative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
leftCharacteristicPolynomial : % -> SparseUnivariatePolynomial(R)
from FiniteRankNonAssociativeAlgebra(R)
leftDiscriminant : () -> R
from FramedNonAssociativeAlgebra(R)
leftDiscriminant : Vector(%) -> R
from FiniteRankNonAssociativeAlgebra(R)
leftMinimalPolynomial : % -> SparseUnivariatePolynomial(R) if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
leftNorm : % -> R
from FiniteRankNonAssociativeAlgebra(R)
leftPower : (%, PositiveInteger) -> %
from Magma
leftRankPolynomial : () -> SparseUnivariatePolynomial(Polynomial(R)) if R has Field
from FramedNonAssociativeAlgebra(R)
leftRecip : % -> Union(%, "failed") if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
leftRegularRepresentation : % -> Matrix(R)
from FramedNonAssociativeAlgebra(R)
leftRegularRepresentation : (%, Vector(%)) -> Matrix(R)
from FiniteRankNonAssociativeAlgebra(R)
leftTrace : % -> R
from FiniteRankNonAssociativeAlgebra(R)
leftTraceMatrix : () -> Matrix(R)
from FramedNonAssociativeAlgebra(R)
leftTraceMatrix : Vector(%) -> Matrix(R)
from FiniteRankNonAssociativeAlgebra(R)
leftUnit : () -> Union(%, "failed") if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
leftUnits : () -> Union(Record(particular : %, basis : List(%)), "failed") if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
lieAdmissible? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
lieAlgebra? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
linearExtend : (Mapping(R, OrderedVariableList(ls)), %) -> R
from FreeModuleCategory(R, OrderedVariableList(ls))
listOfTerms : % -> List(Record(k : OrderedVariableList(ls), c : R))
from IndexedDirectProductCategory(R, OrderedVariableList(ls))
lookup : % -> PositiveInteger if R has Finite
from Finite
map : (Mapping(R, R), %) -> %
from IndexedProductCategory(R, OrderedVariableList(ls))
monomial : (R, OrderedVariableList(ls)) -> %
from IndexedProductCategory(R, OrderedVariableList(ls))
monomial? : % -> Boolean
from IndexedProductCategory(R, OrderedVariableList(ls))
monomials : % -> List(%)
from FreeModuleCategory(R, OrderedVariableList(ls))
noncommutativeJordanAlgebra? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
numberOfMonomials : % -> NonNegativeInteger
from IndexedDirectProductCategory(R, OrderedVariableList(ls))
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(R)
powerAssociative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
random : () -> % if R has Finite
from Finite
rank : () -> PositiveInteger
from FiniteRankNonAssociativeAlgebra(R)
recip : % -> Union(%, "failed") if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
reductum : % -> %
from IndexedProductCategory(R, OrderedVariableList(ls))
represents : Vector(R) -> %
from FramedModule(R)
represents : (Vector(R), Vector(%)) -> %
from FiniteRankNonAssociativeAlgebra(R)
rightAlternative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(R)
rightCharacteristicPolynomial : % -> SparseUnivariatePolynomial(R)
from FiniteRankNonAssociativeAlgebra(R)
rightDiscriminant : () -> R
from FramedNonAssociativeAlgebra(R)
rightDiscriminant : Vector(%) -> R
from FiniteRankNonAssociativeAlgebra(R)
rightMinimalPolynomial : % -> SparseUnivariatePolynomial(R) if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
rightNorm : % -> R
from FiniteRankNonAssociativeAlgebra(R)
rightPower : (%, PositiveInteger) -> %
from Magma
rightRankPolynomial : () -> SparseUnivariatePolynomial(Polynomial(R)) if R has Field
from FramedNonAssociativeAlgebra(R)
rightRecip : % -> Union(%, "failed") if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
rightRegularRepresentation : % -> Matrix(R)
from FramedNonAssociativeAlgebra(R)
rightRegularRepresentation : (%, Vector(%)) -> Matrix(R)
from FiniteRankNonAssociativeAlgebra(R)
rightTrace : % -> R
from FiniteRankNonAssociativeAlgebra(R)
rightTraceMatrix : () -> Matrix(R)
from FramedNonAssociativeAlgebra(R)
rightTraceMatrix : Vector(%) -> Matrix(R)
from FiniteRankNonAssociativeAlgebra(R)
rightUnit : () -> Union(%, "failed") if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
rightUnits : () -> Union(Record(particular : %, basis : List(%)), "failed") if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
sample : () -> %
from AbelianMonoid
size : () -> NonNegativeInteger if R has Finite
from Finite
smaller? : (%, %) -> Boolean if R has Comparable
from Comparable
someBasis : () -> Vector(%)
from FiniteRankNonAssociativeAlgebra(R)
structuralConstants : () -> Vector(Matrix(R))
from FramedNonAssociativeAlgebra(R)
structuralConstants : Vector(%) -> Vector(Matrix(R))
from FiniteRankNonAssociativeAlgebra(R)
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
support : % -> List(OrderedVariableList(ls))
from FreeModuleCategory(R, OrderedVariableList(ls))
unit : () -> Union(%, "failed") if R has IntegralDomain
from FiniteRankNonAssociativeAlgebra(R)
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

Comparable

ConvertibleTo(InputForm)

FiniteRankNonAssociativeAlgebra(R)

AbelianMonoid

BiModule(R, R)

IndexedProductCategory(R, OrderedVariableList(ls))

NonAssociativeAlgebra(R)

CancellationAbelianMonoid

unitsKnown

AbelianGroup

Module(R)

LeftModule(R)

SetCategory

CoercibleTo(OutputForm)

FramedModule(R)

Magma

AbelianSemiGroup

FramedNonAssociativeAlgebra(R)

IndexedDirectProductCategory(R, OrderedVariableList(ls))

FreeModuleCategory(R, OrderedVariableList(ls))

LeftModule(SquareMatrix(n, R))

RightModule(R)

AbelianProductCategory(R)

NonAssociativeRng

NonAssociativeSemiRng

Hashable

Finite

BasicType