AlgebraGivenByStructuralConstants(R, n, ls, gamma)
naalg.spad line 1
[edit on github]
AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring, given by the structural constants gamma
with respect to a fixed basis [a1, .., an]
, where gamma
is an n
-vector of n
by n
matrices [(gammaijk) for k in 1..rank()]
defined by ai
* aj = gammaij1 * a1 + ... + gammaijn * an
. The symbols for the fixed basis have to be given as a list of symbols.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- * : (SquareMatrix(n, R), %) -> %
- from LeftModule(SquareMatrix(n, R))
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, PositiveInteger) -> %
- from Magma
- alternative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- antiAssociative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- antiCommutative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- apply : (Matrix(R), %) -> %
- from FramedNonAssociativeAlgebra(R)
- associative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- associator : (%, %, %) -> %
- from NonAssociativeRng
- associatorDependence : () -> List(Vector(R)) if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- basis : () -> Vector(%)
- from FramedModule(R)
- coefficient : (%, OrderedVariableList(ls)) -> R
- from FreeModuleCategory(R, OrderedVariableList(ls))
- coefficients : % -> List(R)
- from FreeModuleCategory(R, OrderedVariableList(ls))
- coerce : Vector(R) -> %
coerce(v)
converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- commutator : (%, %) -> %
- from NonAssociativeRng
- conditionsForIdempotents : () -> List(Polynomial(R))
- from FramedNonAssociativeAlgebra(R)
- conditionsForIdempotents : Vector(%) -> List(Polynomial(R))
- from FiniteRankNonAssociativeAlgebra(R)
- construct : List(Record(k : OrderedVariableList(ls), c : R)) -> %
- from IndexedProductCategory(R, OrderedVariableList(ls))
- constructOrdered : List(Record(k : OrderedVariableList(ls), c : R)) -> %
- from IndexedProductCategory(R, OrderedVariableList(ls))
- convert : Vector(R) -> %
- from FramedModule(R)
- convert : % -> InputForm if R has Finite
- from ConvertibleTo(InputForm)
- convert : % -> Vector(R)
- from FramedModule(R)
- coordinates : Vector(%) -> Matrix(R)
- from FramedModule(R)
- coordinates : (Vector(%), Vector(%)) -> Matrix(R)
- from FiniteRankNonAssociativeAlgebra(R)
- coordinates : % -> Vector(R)
- from FramedModule(R)
- coordinates : (%, Vector(%)) -> Vector(R)
- from FiniteRankNonAssociativeAlgebra(R)
- elt : (%, Integer) -> R
- from FramedNonAssociativeAlgebra(R)
- enumerate : () -> List(%) if R has Finite
- from Finite
- flexible? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- hash : % -> SingleInteger if R has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if R has Hashable
- from Hashable
- index : PositiveInteger -> % if R has Finite
- from Finite
- jacobiIdentity? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- jordanAdmissible? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- jordanAlgebra? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> R
- from IndexedProductCategory(R, OrderedVariableList(ls))
- leadingMonomial : % -> %
- from IndexedProductCategory(R, OrderedVariableList(ls))
- leadingSupport : % -> OrderedVariableList(ls)
- from IndexedProductCategory(R, OrderedVariableList(ls))
- leadingTerm : % -> Record(k : OrderedVariableList(ls), c : R)
- from IndexedProductCategory(R, OrderedVariableList(ls))
- leftAlternative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- leftCharacteristicPolynomial : % -> SparseUnivariatePolynomial(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftDiscriminant : () -> R
- from FramedNonAssociativeAlgebra(R)
- leftDiscriminant : Vector(%) -> R
- from FiniteRankNonAssociativeAlgebra(R)
- leftMinimalPolynomial : % -> SparseUnivariatePolynomial(R) if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- leftNorm : % -> R
- from FiniteRankNonAssociativeAlgebra(R)
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRankPolynomial : () -> SparseUnivariatePolynomial(Polynomial(R)) if R has Field
- from FramedNonAssociativeAlgebra(R)
- leftRecip : % -> Union(%, "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- leftRegularRepresentation : % -> Matrix(R)
- from FramedNonAssociativeAlgebra(R)
- leftRegularRepresentation : (%, Vector(%)) -> Matrix(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftTrace : % -> R
- from FiniteRankNonAssociativeAlgebra(R)
- leftTraceMatrix : () -> Matrix(R)
- from FramedNonAssociativeAlgebra(R)
- leftTraceMatrix : Vector(%) -> Matrix(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftUnit : () -> Union(%, "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- leftUnits : () -> Union(Record(particular : %, basis : List(%)), "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- lieAdmissible? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- lieAlgebra? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- linearExtend : (Mapping(R, OrderedVariableList(ls)), %) -> R
- from FreeModuleCategory(R, OrderedVariableList(ls))
- listOfTerms : % -> List(Record(k : OrderedVariableList(ls), c : R))
- from IndexedDirectProductCategory(R, OrderedVariableList(ls))
- lookup : % -> PositiveInteger if R has Finite
- from Finite
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, OrderedVariableList(ls))
- monomial : (R, OrderedVariableList(ls)) -> %
- from IndexedProductCategory(R, OrderedVariableList(ls))
- monomial? : % -> Boolean
- from IndexedProductCategory(R, OrderedVariableList(ls))
- monomials : % -> List(%)
- from FreeModuleCategory(R, OrderedVariableList(ls))
- noncommutativeJordanAlgebra? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, OrderedVariableList(ls))
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(R)
- powerAssociative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- random : () -> % if R has Finite
- from Finite
- rank : () -> PositiveInteger
- from FiniteRankNonAssociativeAlgebra(R)
- recip : % -> Union(%, "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- reductum : % -> %
- from IndexedProductCategory(R, OrderedVariableList(ls))
- represents : Vector(R) -> %
- from FramedModule(R)
- represents : (Vector(R), Vector(%)) -> %
- from FiniteRankNonAssociativeAlgebra(R)
- rightAlternative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- rightCharacteristicPolynomial : % -> SparseUnivariatePolynomial(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightDiscriminant : () -> R
- from FramedNonAssociativeAlgebra(R)
- rightDiscriminant : Vector(%) -> R
- from FiniteRankNonAssociativeAlgebra(R)
- rightMinimalPolynomial : % -> SparseUnivariatePolynomial(R) if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- rightNorm : % -> R
- from FiniteRankNonAssociativeAlgebra(R)
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRankPolynomial : () -> SparseUnivariatePolynomial(Polynomial(R)) if R has Field
- from FramedNonAssociativeAlgebra(R)
- rightRecip : % -> Union(%, "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- rightRegularRepresentation : % -> Matrix(R)
- from FramedNonAssociativeAlgebra(R)
- rightRegularRepresentation : (%, Vector(%)) -> Matrix(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightTrace : % -> R
- from FiniteRankNonAssociativeAlgebra(R)
- rightTraceMatrix : () -> Matrix(R)
- from FramedNonAssociativeAlgebra(R)
- rightTraceMatrix : Vector(%) -> Matrix(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightUnit : () -> Union(%, "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- rightUnits : () -> Union(Record(particular : %, basis : List(%)), "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- sample : () -> %
- from AbelianMonoid
- size : () -> NonNegativeInteger if R has Finite
- from Finite
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- someBasis : () -> Vector(%)
- from FiniteRankNonAssociativeAlgebra(R)
- structuralConstants : () -> Vector(Matrix(R))
- from FramedNonAssociativeAlgebra(R)
- structuralConstants : Vector(%) -> Vector(Matrix(R))
- from FiniteRankNonAssociativeAlgebra(R)
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- support : % -> List(OrderedVariableList(ls))
- from FreeModuleCategory(R, OrderedVariableList(ls))
- unit : () -> Union(%, "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Comparable
ConvertibleTo(InputForm)
FiniteRankNonAssociativeAlgebra(R)
AbelianMonoid
BiModule(R, R)
IndexedProductCategory(R, OrderedVariableList(ls))
NonAssociativeAlgebra(R)
CancellationAbelianMonoid
unitsKnown
AbelianGroup
Module(R)
LeftModule(R)
SetCategory
CoercibleTo(OutputForm)
FramedModule(R)
Magma
AbelianSemiGroup
FramedNonAssociativeAlgebra(R)
IndexedDirectProductCategory(R, OrderedVariableList(ls))
FreeModuleCategory(R, OrderedVariableList(ls))
LeftModule(SquareMatrix(n, R))
RightModule(R)
AbelianProductCategory(R)
NonAssociativeRng
NonAssociativeSemiRng
Hashable
Finite
BasicType