GenericNonAssociativeAlgebra(R, n, ls, gamma)

generic.spad line 1 [edit on github]

AlgebraGenericElementPackage allows you to create generic elements of an algebra, i.e. the scalars are extended to include symbolic coefficients

* : (%, %) -> %
from Magma
* : (%, Fraction(Polynomial(R))) -> %
from RightModule(Fraction(Polynomial(R)))
* : (Fraction(Polynomial(R)), %) -> %
from LeftModule(Fraction(Polynomial(R)))
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
* : (SquareMatrix(n, Fraction(Polynomial(R))), %) -> %
from LeftModule(SquareMatrix(n, Fraction(Polynomial(R))))
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
= : (%, %) -> Boolean
from BasicType
^ : (%, PositiveInteger) -> %
from Magma
alternative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
antiAssociative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
antiCommutative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
apply : (Matrix(Fraction(Polynomial(R))), %) -> %
from FramedNonAssociativeAlgebra(Fraction(Polynomial(R)))
associative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
associator : (%, %, %) -> %
from NonAssociativeRng
associatorDependence : () -> List(Vector(Fraction(Polynomial(R))))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
basis : () -> Vector(%)
from FramedModule(Fraction(Polynomial(R)))
coerce : Vector(Fraction(Polynomial(R))) -> %

coerce(v) assumes that it is called with a vector of length equal to the dimension of the algebra, then a linear combination with the basis element is formed

coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
commutator : (%, %) -> %
from NonAssociativeRng
conditionsForIdempotents : () -> List(Polynomial(R)) if R has IntegralDomain

conditionsForIdempotents() determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed R-module basis

conditionsForIdempotents : Vector(%) -> List(Polynomial(R)) if R has IntegralDomain

conditionsForIdempotents([v1, ..., vn]) determines a complete list of polynomial equations for the coefficients of idempotents with respect to the R-module basis v1, ..., vn

conditionsForIdempotents : () -> List(Polynomial(Fraction(Polynomial(R))))
from FramedNonAssociativeAlgebra(Fraction(Polynomial(R)))
conditionsForIdempotents : Vector(%) -> List(Polynomial(Fraction(Polynomial(R))))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
convert : Vector(Fraction(Polynomial(R))) -> %
from FramedModule(Fraction(Polynomial(R)))
convert : % -> InputForm if Fraction(Polynomial(R)) has Finite
from ConvertibleTo(InputForm)
convert : % -> Vector(Fraction(Polynomial(R)))
from FramedModule(Fraction(Polynomial(R)))
coordinates : Vector(%) -> Matrix(Fraction(Polynomial(R)))
from FramedModule(Fraction(Polynomial(R)))
coordinates : (Vector(%), Vector(%)) -> Matrix(Fraction(Polynomial(R)))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
coordinates : % -> Vector(Fraction(Polynomial(R)))
from FramedModule(Fraction(Polynomial(R)))
coordinates : (%, Vector(%)) -> Vector(Fraction(Polynomial(R)))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
elt : (%, Integer) -> Fraction(Polynomial(R))
from FramedNonAssociativeAlgebra(Fraction(Polynomial(R)))
enumerate : () -> List(%) if Fraction(Polynomial(R)) has Finite
from Finite
flexible? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
generic : () -> %

generic() returns a generic element, i.e. the linear combination of the fixed basis with the symbolic coefficients %x1, %x2, ..

generic : Symbol -> %

generic(s) returns a generic element, i.e. the linear combination of the fixed basis with the symbolic coefficients s1, s2, ..

generic : (Symbol, Vector(%)) -> %

generic(s, v) returns a generic element, i.e. the linear combination of v with the symbolic coefficients s1, s2, ..

generic : Vector(%) -> %

generic(ve) returns a generic element, i.e. the linear combination of ve basis with the symbolic coefficients %x1, %x2, ..

generic : Vector(Symbol) -> %

generic(vs) returns a generic element, i.e. the linear combination of the fixed basis with the symbolic coefficients vs; error, if the vector of symbols is too short

generic : (Vector(Symbol), Vector(%)) -> %

generic(vs, ve) returns a generic element, i.e. the linear combination of ve with the symbolic coefficients vs error, if the vector of symbols is shorter than the vector of elements

genericLeftDiscriminant : () -> Fraction(Polynomial(R)) if R has IntegralDomain

genericLeftDiscriminant() is the determinant of the generic left trace forms of all products of basis element, if the generic left trace form is associative, an algebra is separable if the generic left discriminant is invertible, if it is non-zero, there is some ring extension which makes the algebra separable

genericLeftMinimalPolynomial : % -> SparseUnivariatePolynomial(Fraction(Polynomial(R))) if R has IntegralDomain

genericLeftMinimalPolynomial(a) substitutes the coefficients of em a for the generic coefficients in leftRankPolynomial()

genericLeftNorm : % -> Fraction(Polynomial(R)) if R has IntegralDomain

genericLeftNorm(a) substitutes the coefficients of a for the generic coefficients into the coefficient of the constant term in leftRankPolynomial and changes the sign if the degree of this polynomial is odd. This is a form of degree k

genericLeftTrace : % -> Fraction(Polynomial(R)) if R has IntegralDomain

genericLeftTrace(a) substitutes the coefficients of a for the generic coefficients into the coefficient of the second highest term in leftRankPolynomial and changes the sign. This is a linear form

genericLeftTraceForm : (%, %) -> Fraction(Polynomial(R)) if R has IntegralDomain

genericLeftTraceForm (a, b) is defined to be genericLeftTrace (a*b), this defines a symmetric bilinear form on the algebra

genericRightDiscriminant : () -> Fraction(Polynomial(R)) if R has IntegralDomain

genericRightDiscriminant() is the determinant of the generic left trace forms of all products of basis element, if the generic left trace form is associative, an algebra is separable if the generic left discriminant is invertible, if it is non-zero, there is some ring extension which makes the algebra separable

genericRightMinimalPolynomial : % -> SparseUnivariatePolynomial(Fraction(Polynomial(R))) if R has IntegralDomain

genericRightMinimalPolynomial(a) substitutes the coefficients of a for the generic coefficients in rightRankPolynomial

genericRightNorm : % -> Fraction(Polynomial(R)) if R has IntegralDomain

genericRightNorm(a) substitutes the coefficients of a for the generic coefficients into the coefficient of the constant term in rightRankPolynomial and changes the sign if the degree of this polynomial is odd

genericRightTrace : % -> Fraction(Polynomial(R)) if R has IntegralDomain

genericRightTrace(a) substitutes the coefficients of a for the generic coefficients into the coefficient of the second highest term in rightRankPolynomial and changes the sign

genericRightTraceForm : (%, %) -> Fraction(Polynomial(R)) if R has IntegralDomain

genericRightTraceForm (a, b) is defined to be genericRightTrace (a*b), this defines a symmetric bilinear form on the algebra

hash : % -> SingleInteger if Fraction(Polynomial(R)) has Hashable
from Hashable
hashUpdate! : (HashState, %) -> HashState if Fraction(Polynomial(R)) has Hashable
from Hashable
index : PositiveInteger -> % if Fraction(Polynomial(R)) has Finite
from Finite
jacobiIdentity? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
jordanAdmissible? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
jordanAlgebra? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
latex : % -> String
from SetCategory
leftAlternative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
leftCharacteristicPolynomial : % -> SparseUnivariatePolynomial(Fraction(Polynomial(R)))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
leftDiscriminant : () -> Fraction(Polynomial(R))
from FramedNonAssociativeAlgebra(Fraction(Polynomial(R)))
leftDiscriminant : Vector(%) -> Fraction(Polynomial(R))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
leftMinimalPolynomial : % -> SparseUnivariatePolynomial(Fraction(Polynomial(R)))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
leftNorm : % -> Fraction(Polynomial(R))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
leftPower : (%, PositiveInteger) -> %
from Magma
leftRankPolynomial : () -> SparseUnivariatePolynomial(Fraction(Polynomial(R))) if R has IntegralDomain

leftRankPolynomial() returns the left minimimal polynomial of the generic element

leftRankPolynomial : () -> SparseUnivariatePolynomial(Polynomial(Fraction(Polynomial(R))))
from FramedNonAssociativeAlgebra(Fraction(Polynomial(R)))
leftRecip : % -> Union(%, "failed")
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
leftRegularRepresentation : % -> Matrix(Fraction(Polynomial(R)))
from FramedNonAssociativeAlgebra(Fraction(Polynomial(R)))
leftRegularRepresentation : (%, Vector(%)) -> Matrix(Fraction(Polynomial(R)))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
leftTrace : % -> Fraction(Polynomial(R))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
leftTraceMatrix : () -> Matrix(Fraction(Polynomial(R)))
from FramedNonAssociativeAlgebra(Fraction(Polynomial(R)))
leftTraceMatrix : Vector(%) -> Matrix(Fraction(Polynomial(R)))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
leftUnit : () -> Union(%, "failed")
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
leftUnits : () -> Union(Record(particular : %, basis : List(%)), "failed")

leftUnits() returns the affine space of all left units of the algebra, or "failed" if there is none

lieAdmissible? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
lieAlgebra? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
lookup : % -> PositiveInteger if Fraction(Polynomial(R)) has Finite
from Finite
noncommutativeJordanAlgebra? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(Fraction(Polynomial(R)))
powerAssociative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
random : () -> % if Fraction(Polynomial(R)) has Finite
from Finite
rank : () -> PositiveInteger
from FramedModule(Fraction(Polynomial(R)))
recip : % -> Union(%, "failed")
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
represents : Vector(Fraction(Polynomial(R))) -> %
from FramedModule(Fraction(Polynomial(R)))
represents : (Vector(Fraction(Polynomial(R))), Vector(%)) -> %
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
rightAlternative? : () -> Boolean
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
rightCharacteristicPolynomial : % -> SparseUnivariatePolynomial(Fraction(Polynomial(R)))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
rightDiscriminant : () -> Fraction(Polynomial(R))
from FramedNonAssociativeAlgebra(Fraction(Polynomial(R)))
rightDiscriminant : Vector(%) -> Fraction(Polynomial(R))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
rightMinimalPolynomial : % -> SparseUnivariatePolynomial(Fraction(Polynomial(R)))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
rightNorm : % -> Fraction(Polynomial(R))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
rightPower : (%, PositiveInteger) -> %
from Magma
rightRankPolynomial : () -> SparseUnivariatePolynomial(Fraction(Polynomial(R))) if R has IntegralDomain

rightRankPolynomial() returns the right minimimal polynomial of the generic element

rightRankPolynomial : () -> SparseUnivariatePolynomial(Polynomial(Fraction(Polynomial(R))))
from FramedNonAssociativeAlgebra(Fraction(Polynomial(R)))
rightRecip : % -> Union(%, "failed")
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
rightRegularRepresentation : % -> Matrix(Fraction(Polynomial(R)))
from FramedNonAssociativeAlgebra(Fraction(Polynomial(R)))
rightRegularRepresentation : (%, Vector(%)) -> Matrix(Fraction(Polynomial(R)))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
rightTrace : % -> Fraction(Polynomial(R))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
rightTraceMatrix : () -> Matrix(Fraction(Polynomial(R)))
from FramedNonAssociativeAlgebra(Fraction(Polynomial(R)))
rightTraceMatrix : Vector(%) -> Matrix(Fraction(Polynomial(R)))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
rightUnit : () -> Union(%, "failed")
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
rightUnits : () -> Union(Record(particular : %, basis : List(%)), "failed")

rightUnits() returns the affine space of all right units of the algebra, or "failed" if there is none

sample : () -> %
from AbelianMonoid
size : () -> NonNegativeInteger if Fraction(Polynomial(R)) has Finite
from Finite
smaller? : (%, %) -> Boolean if Fraction(Polynomial(R)) has Finite
from Comparable
someBasis : () -> Vector(%)
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
structuralConstants : () -> Vector(Matrix(Fraction(Polynomial(R))))
from FramedNonAssociativeAlgebra(Fraction(Polynomial(R)))
structuralConstants : Vector(%) -> Vector(Matrix(Fraction(Polynomial(R))))
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
unit : () -> Union(%, "failed")
from FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

Comparable

ConvertibleTo(InputForm)

NonAssociativeSemiRng

LeftModule(Fraction(Polynomial(R)))

NonAssociativeAlgebra(Fraction(Polynomial(R)))

CancellationAbelianMonoid

AbelianGroup

FramedModule(Fraction(Polynomial(R)))

SetCategory

CoercibleTo(OutputForm)

RightModule(Fraction(Polynomial(R)))

Magma

unitsKnown

AbelianSemiGroup

FramedNonAssociativeAlgebra(Fraction(Polynomial(R)))

Module(Fraction(Polynomial(R)))

LeftModule(SquareMatrix(n, Fraction(Polynomial(R))))

BiModule(Fraction(Polynomial(R)), Fraction(Polynomial(R)))

NonAssociativeRng

FiniteRankNonAssociativeAlgebra(Fraction(Polynomial(R)))

AbelianMonoid

Hashable

Finite

BasicType