InnerPAdicInteger(p, unBalanced?)
padic.spad line 47
[edit on github]
This domain implements Zp
, the p
-adic completion of the integers. This is an internal domain.
- * : (%, %) -> %
- from Magma
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- approximate : (%, Integer) -> Integer
- from PAdicIntegerCategory(p)
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : % -> %
- from Algebra(%)
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- complete : % -> %
- from PAdicIntegerCategory(p)
- digits : % -> Stream(Integer)
- from PAdicIntegerCategory(p)
- divide : (%, %) -> Record(quotient : %, remainder : %)
- from EuclideanDomain
- euclideanSize : % -> NonNegativeInteger
- from EuclideanDomain
- expressIdealMember : (List(%), %) -> Union(List(%), "failed")
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extend : (%, Integer) -> %
- from PAdicIntegerCategory(p)
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
- from EuclideanDomain
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from GcdDomain
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- moduloP : % -> Integer
- from PAdicIntegerCategory(p)
- modulus : () -> Integer
- from PAdicIntegerCategory(p)
- multiEuclidean : (List(%), %) -> Union(List(%), "failed")
- from EuclideanDomain
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : % -> NonNegativeInteger
- from PAdicIntegerCategory(p)
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- principalIdeal : List(%) -> Record(coef : List(%), generator : %)
- from PrincipalIdealDomain
- quo : (%, %) -> %
- from EuclideanDomain
- quotientByP : % -> %
- from PAdicIntegerCategory(p)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rem : (%, %) -> %
- from EuclideanDomain
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- root : (SparseUnivariatePolynomial(Integer), Integer) -> %
- from PAdicIntegerCategory(p)
- sample : () -> %
- from AbelianMonoid
- sizeLess? : (%, %) -> Boolean
- from EuclideanDomain
- sqrt : (%, Integer) -> %
- from PAdicIntegerCategory(p)
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
IntegralDomain
noZeroDivisors
Algebra(%)
RightModule(%)
Monoid
GcdDomain
AbelianMonoid
PAdicIntegerCategory(p)
EuclideanDomain
EntireRing
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
AbelianGroup
LeftModule(%)
CommutativeStar
Module(%)
SetCategory
LeftOreRing
Rng
CommutativeRing
TwoSidedRecip
Magma
SemiGroup
BiModule(%, %)
CoercibleTo(OutputForm)
AbelianSemiGroup
NonAssociativeSemiRing
NonAssociativeAlgebra(%)
PrincipalIdealDomain
NonAssociativeRng
unitsKnown
Ring
SemiRng
NonAssociativeSemiRng
CharacteristicZero
BasicType
SemiRing