InnerPAdicInteger(p, unBalanced?)

padic.spad line 47 [edit on github]

This domain implements Zp, the p-adic completion of the integers. This is an internal domain.

* : (%, %) -> %
from Magma
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
approximate : (%, Integer) -> Integer
from PAdicIntegerCategory(p)
associates? : (%, %) -> Boolean
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : % -> %
from Algebra(%)
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
complete : % -> %
from PAdicIntegerCategory(p)
digits : % -> Stream(Integer)
from PAdicIntegerCategory(p)
divide : (%, %) -> Record(quotient : %, remainder : %)
from EuclideanDomain
euclideanSize : % -> NonNegativeInteger
from EuclideanDomain
expressIdealMember : (List(%), %) -> Union(List(%), "failed")
from PrincipalIdealDomain
exquo : (%, %) -> Union(%, "failed")
from EntireRing
extend : (%, Integer) -> %
from PAdicIntegerCategory(p)
extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
from EuclideanDomain
extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
from EuclideanDomain
gcd : (%, %) -> %
from GcdDomain
gcd : List(%) -> %
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
from GcdDomain
latex : % -> String
from SetCategory
lcm : (%, %) -> %
from GcdDomain
lcm : List(%) -> %
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
from LeftOreRing
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
moduloP : % -> Integer
from PAdicIntegerCategory(p)
modulus : () -> Integer
from PAdicIntegerCategory(p)
multiEuclidean : (List(%), %) -> Union(List(%), "failed")
from EuclideanDomain
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
order : % -> NonNegativeInteger
from PAdicIntegerCategory(p)
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
principalIdeal : List(%) -> Record(coef : List(%), generator : %)
from PrincipalIdealDomain
quo : (%, %) -> %
from EuclideanDomain
quotientByP : % -> %
from PAdicIntegerCategory(p)
recip : % -> Union(%, "failed")
from MagmaWithUnit
rem : (%, %) -> %
from EuclideanDomain
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
root : (SparseUnivariatePolynomial(Integer), Integer) -> %
from PAdicIntegerCategory(p)
sample : () -> %
from AbelianMonoid
sizeLess? : (%, %) -> Boolean
from EuclideanDomain
sqrt : (%, Integer) -> %
from PAdicIntegerCategory(p)
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
unit? : % -> Boolean
from EntireRing
unitCanonical : % -> %
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %)
from EntireRing
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

IntegralDomain

noZeroDivisors

Algebra(%)

RightModule(%)

Monoid

GcdDomain

AbelianMonoid

PAdicIntegerCategory(p)

EuclideanDomain

EntireRing

CancellationAbelianMonoid

MagmaWithUnit

NonAssociativeRing

AbelianGroup

LeftModule(%)

CommutativeStar

Module(%)

SetCategory

LeftOreRing

Rng

CommutativeRing

TwoSidedRecip

Magma

SemiGroup

BiModule(%, %)

CoercibleTo(OutputForm)

AbelianSemiGroup

NonAssociativeSemiRing

NonAssociativeAlgebra(%)

PrincipalIdealDomain

NonAssociativeRng

unitsKnown

Ring

SemiRng

NonAssociativeSemiRng

CharacteristicZero

BasicType

SemiRing