SplitHomogeneousDirectProduct(dimtot, dim1, S)

gdirprod.spad line 130 [edit on github]

This type represents the finite direct or cartesian product of an underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like HomogeneousDirectProduct within each block. This type is a suitable third argument for GeneralDistributedMultivariatePolynomial.

# : % -> NonNegativeInteger
from Aggregate
* : (%, %) -> % if S has SemiGroup
from Magma
* : (%, S) -> % if S has SemiGroup
from DirectProductCategory(dimtot, S)
* : (%, Integer) -> % if S has LinearlyExplicitOver(Integer) and S has Ring
from RightModule(Integer)
* : (S, %) -> % if S has SemiGroup
from DirectProductCategory(dimtot, S)
* : (Integer, %) -> % if % has AbelianGroup and S has SemiRng or S has AbelianGroup
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> % if % has AbelianGroup and S has SemiRng or S has AbelianGroup
from AbelianGroup
- : (%, %) -> % if % has AbelianGroup and S has SemiRng or S has AbelianGroup
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> % if S has Monoid
from MagmaWithUnit
< : (%, %) -> Boolean
from PartialOrder
<= : (%, %) -> Boolean
from PartialOrder
= : (%, %) -> Boolean
from BasicType
> : (%, %) -> Boolean
from PartialOrder
>= : (%, %) -> Boolean
from PartialOrder
D : % -> % if S has DifferentialRing and S has Ring
from DifferentialRing
D : (%, List(Symbol)) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
from PartialDifferentialRing(Symbol)
D : (%, List(Symbol), List(NonNegativeInteger)) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
from PartialDifferentialRing(Symbol)
D : (%, Mapping(S, S)) -> % if S has Ring
from DifferentialExtension(S)
D : (%, Mapping(S, S), NonNegativeInteger) -> % if S has Ring
from DifferentialExtension(S)
D : (%, NonNegativeInteger) -> % if S has DifferentialRing and S has Ring
from DifferentialRing
D : (%, Symbol) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
from PartialDifferentialRing(Symbol)
D : (%, Symbol, NonNegativeInteger) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
from PartialDifferentialRing(Symbol)
^ : (%, NonNegativeInteger) -> % if S has Monoid
from MagmaWithUnit
^ : (%, PositiveInteger) -> % if S has SemiGroup
from Magma
annihilate? : (%, %) -> Boolean if S has Ring
from Rng
antiCommutator : (%, %) -> % if S has SemiRng
from NonAssociativeSemiRng
any? : (Mapping(Boolean, S), %) -> Boolean
from HomogeneousAggregate(S)
associator : (%, %, %) -> % if S has Ring
from NonAssociativeRng
characteristic : () -> NonNegativeInteger if S has Ring
from NonAssociativeRing
coerce : % -> % if S has CommutativeRing
from Algebra(%)
coerce : S -> %
from Algebra(S)
coerce : Fraction(Integer) -> % if S has RetractableTo(Fraction(Integer))
from CoercibleFrom(Fraction(Integer))
coerce : Integer -> % if S has Ring or S has RetractableTo(Integer)
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
coerce : % -> Vector(S)
from CoercibleTo(Vector(S))
commutator : (%, %) -> % if S has Ring
from NonAssociativeRng
convert : % -> InputForm if S has Finite
from ConvertibleTo(InputForm)
copy : % -> %
from Aggregate
count : (S, %) -> NonNegativeInteger
from HomogeneousAggregate(S)
count : (Mapping(Boolean, S), %) -> NonNegativeInteger
from HomogeneousAggregate(S)
differentiate : % -> % if S has DifferentialRing and S has Ring
from DifferentialRing
differentiate : (%, List(Symbol)) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
from PartialDifferentialRing(Symbol)
differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
from PartialDifferentialRing(Symbol)
differentiate : (%, Mapping(S, S)) -> % if S has Ring
from DifferentialExtension(S)
differentiate : (%, Mapping(S, S), NonNegativeInteger) -> % if S has Ring
from DifferentialExtension(S)
differentiate : (%, NonNegativeInteger) -> % if S has DifferentialRing and S has Ring
from DifferentialRing
differentiate : (%, Symbol) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
from PartialDifferentialRing(Symbol)
differentiate : (%, Symbol, NonNegativeInteger) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
from PartialDifferentialRing(Symbol)
directProduct : Vector(S) -> %
from DirectProductCategory(dimtot, S)
dot : (%, %) -> S if S has SemiRng
from DirectProductCategory(dimtot, S)
elt : (%, Integer) -> S
from Eltable(Integer, S)
elt : (%, Integer, S) -> S
from EltableAggregate(Integer, S)
empty : () -> %
from Aggregate
empty? : % -> Boolean
from Aggregate
entries : % -> List(S)
from IndexedAggregate(Integer, S)
entry? : (S, %) -> Boolean
from IndexedAggregate(Integer, S)
enumerate : () -> List(%) if S has Finite
from Finite
eq? : (%, %) -> Boolean
from Aggregate
eval : (%, S, S) -> % if S has Evalable(S)
from InnerEvalable(S, S)
eval : (%, Equation(S)) -> % if S has Evalable(S)
from Evalable(S)
eval : (%, List(S), List(S)) -> % if S has Evalable(S)
from InnerEvalable(S, S)
eval : (%, List(Equation(S))) -> % if S has Evalable(S)
from Evalable(S)
every? : (Mapping(Boolean, S), %) -> Boolean
from HomogeneousAggregate(S)
first : % -> S
from IndexedAggregate(Integer, S)
hash : % -> SingleInteger if S has Finite
from Hashable
hashUpdate! : (HashState, %) -> HashState if S has Finite
from Hashable
index : PositiveInteger -> % if S has Finite
from Finite
index? : (Integer, %) -> Boolean
from IndexedAggregate(Integer, S)
indices : % -> List(Integer)
from IndexedAggregate(Integer, S)
inf : (%, %) -> % if S has OrderedAbelianMonoidSup
from OrderedAbelianMonoidSup
latex : % -> String
from SetCategory
leftPower : (%, NonNegativeInteger) -> % if S has Monoid
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> % if S has SemiGroup
from Magma
leftRecip : % -> Union(%, "failed") if S has Monoid
from MagmaWithUnit
less? : (%, NonNegativeInteger) -> Boolean
from Aggregate
lookup : % -> PositiveInteger if S has Finite
from Finite
map : (Mapping(S, S), %) -> %
from HomogeneousAggregate(S)
max : (%, %) -> %
from OrderedSet
max : % -> S
from HomogeneousAggregate(S)
max : (Mapping(Boolean, S, S), %) -> S
from HomogeneousAggregate(S)
maxIndex : % -> Integer
from IndexedAggregate(Integer, S)
member? : (S, %) -> Boolean
from HomogeneousAggregate(S)
members : % -> List(S)
from HomogeneousAggregate(S)
min : (%, %) -> %
from OrderedSet
min : % -> S
from HomogeneousAggregate(S)
minIndex : % -> Integer
from IndexedAggregate(Integer, S)
more? : (%, NonNegativeInteger) -> Boolean
from Aggregate
one? : % -> Boolean if S has Monoid
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
parts : % -> List(S)
from HomogeneousAggregate(S)
plenaryPower : (%, PositiveInteger) -> % if S has CommutativeRing
from NonAssociativeAlgebra(S)
qelt : (%, Integer) -> S
from EltableAggregate(Integer, S)
random : () -> % if S has Finite
from Finite
recip : % -> Union(%, "failed") if S has Monoid
from MagmaWithUnit
reducedSystem : Matrix(%) -> Matrix(S) if S has Ring
from LinearlyExplicitOver(S)
reducedSystem : Matrix(%) -> Matrix(Integer) if S has LinearlyExplicitOver(Integer) and S has Ring
from LinearlyExplicitOver(Integer)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(S), vec : Vector(S)) if S has Ring
from LinearlyExplicitOver(S)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if S has LinearlyExplicitOver(Integer) and S has Ring
from LinearlyExplicitOver(Integer)
retract : % -> S
from RetractableTo(S)
retract : % -> Fraction(Integer) if S has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retract : % -> Integer if S has RetractableTo(Integer)
from RetractableTo(Integer)
retractIfCan : % -> Union(S, "failed")
from RetractableTo(S)
retractIfCan : % -> Union(Fraction(Integer), "failed") if S has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retractIfCan : % -> Union(Integer, "failed") if S has RetractableTo(Integer)
from RetractableTo(Integer)
rightPower : (%, NonNegativeInteger) -> % if S has Monoid
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> % if S has SemiGroup
from Magma
rightRecip : % -> Union(%, "failed") if S has Monoid
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
size : () -> NonNegativeInteger if S has Finite
from Finite
size? : (%, NonNegativeInteger) -> Boolean
from Aggregate
smaller? : (%, %) -> Boolean
from Comparable
subtractIfCan : (%, %) -> Union(%, "failed") if S has CancellationAbelianMonoid
from CancellationAbelianMonoid
sup : (%, %) -> % if S has OrderedAbelianMonoidSup
from OrderedAbelianMonoidSup
unitVector : PositiveInteger -> % if S has Monoid
from DirectProductCategory(dimtot, S)
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

LinearlyExplicitOver(S)

PartialOrder

NonAssociativeSemiRing

BiModule(%, %)

HomogeneousAggregate(S)

ConvertibleTo(InputForm)

DirectProductCategory(dimtot, S)

Rng

CoercibleFrom(Integer)

TwoSidedRecip

SemiRing

Aggregate

DifferentialExtension(S)

unitsKnown

CoercibleTo(Vector(S))

NonAssociativeAlgebra(S)

FullyRetractableTo(S)

LinearlyExplicitOver(Integer)

RetractableTo(Fraction(Integer))

EltableAggregate(Integer, S)

OrderedSet

Magma

SemiGroup

LeftModule(%)

NonAssociativeRing

finiteAggregate

PartialDifferentialRing(Symbol)

RightModule(S)

CoercibleFrom(Fraction(Integer))

Algebra(%)

DifferentialRing

CommutativeRing

Evalable(S)

NonAssociativeSemiRng

CancellationAbelianMonoid

Module(S)

Comparable

RetractableTo(Integer)

OrderedCancellationAbelianMonoid

OrderedAbelianMonoid

SetCategory

InnerEvalable(S, S)

AbelianMonoid

MagmaWithUnit

RightModule(%)

Hashable

CoercibleFrom(S)

CommutativeStar

RetractableTo(S)

LeftModule(S)

OrderedAbelianSemiGroup

Module(%)

CoercibleTo(OutputForm)

Ring

Eltable(Integer, S)

SemiRng

IndexedAggregate(Integer, S)

Monoid

NonAssociativeAlgebra(%)

Finite

Algebra(S)

BiModule(S, S)

BasicType

RightModule(Integer)

OrderedAbelianMonoidSup

AbelianSemiGroup

FullyLinearlyExplicitOver(S)

NonAssociativeRng

AbelianGroup

AbelianProductCategory(S)