SplitHomogeneousDirectProduct(dimtot, dim1, S)
gdirprod.spad line 130
[edit on github]
This type represents the finite direct or cartesian product of an underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1
parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like HomogeneousDirectProduct within each block. This type is a suitable third argument for GeneralDistributedMultivariatePolynomial.
- # : % -> NonNegativeInteger
- from Aggregate
- * : (%, %) -> % if S has SemiGroup
- from Magma
- * : (%, S) -> % if S has SemiGroup
- from DirectProductCategory(dimtot, S)
- * : (%, Integer) -> % if S has LinearlyExplicitOver(Integer) and S has Ring
- from RightModule(Integer)
- * : (S, %) -> % if S has SemiGroup
- from DirectProductCategory(dimtot, S)
- * : (Integer, %) -> % if % has AbelianGroup and S has SemiRng or S has AbelianGroup
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> % if % has AbelianGroup and S has SemiRng or S has AbelianGroup
- from AbelianGroup
- - : (%, %) -> % if % has AbelianGroup and S has SemiRng or S has AbelianGroup
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> % if S has Monoid
- from MagmaWithUnit
- < : (%, %) -> Boolean
- from PartialOrder
- <= : (%, %) -> Boolean
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean
- from PartialOrder
- >= : (%, %) -> Boolean
- from PartialOrder
- D : % -> % if S has DifferentialRing and S has Ring
- from DifferentialRing
- D : (%, List(Symbol)) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, Mapping(S, S)) -> % if S has Ring
- from DifferentialExtension(S)
- D : (%, Mapping(S, S), NonNegativeInteger) -> % if S has Ring
- from DifferentialExtension(S)
- D : (%, NonNegativeInteger) -> % if S has DifferentialRing and S has Ring
- from DifferentialRing
- D : (%, Symbol) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
- from PartialDifferentialRing(Symbol)
- ^ : (%, NonNegativeInteger) -> % if S has Monoid
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> % if S has SemiGroup
- from Magma
- annihilate? : (%, %) -> Boolean if S has Ring
- from Rng
- antiCommutator : (%, %) -> % if S has SemiRng
- from NonAssociativeSemiRng
- any? : (Mapping(Boolean, S), %) -> Boolean
- from HomogeneousAggregate(S)
- associator : (%, %, %) -> % if S has Ring
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger if S has Ring
- from NonAssociativeRing
- coerce : % -> % if S has CommutativeRing
- from Algebra(%)
- coerce : S -> %
- from Algebra(S)
- coerce : Fraction(Integer) -> % if S has RetractableTo(Fraction(Integer))
- from CoercibleFrom(Fraction(Integer))
- coerce : Integer -> % if S has Ring or S has RetractableTo(Integer)
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- coerce : % -> Vector(S)
- from CoercibleTo(Vector(S))
- commutator : (%, %) -> % if S has Ring
- from NonAssociativeRng
- convert : % -> InputForm if S has Finite
- from ConvertibleTo(InputForm)
- copy : % -> %
- from Aggregate
- count : (S, %) -> NonNegativeInteger
- from HomogeneousAggregate(S)
- count : (Mapping(Boolean, S), %) -> NonNegativeInteger
- from HomogeneousAggregate(S)
- differentiate : % -> % if S has DifferentialRing and S has Ring
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Mapping(S, S)) -> % if S has Ring
- from DifferentialExtension(S)
- differentiate : (%, Mapping(S, S), NonNegativeInteger) -> % if S has Ring
- from DifferentialExtension(S)
- differentiate : (%, NonNegativeInteger) -> % if S has DifferentialRing and S has Ring
- from DifferentialRing
- differentiate : (%, Symbol) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
- from PartialDifferentialRing(Symbol)
- directProduct : Vector(S) -> %
- from DirectProductCategory(dimtot, S)
- dot : (%, %) -> S if S has SemiRng
- from DirectProductCategory(dimtot, S)
- elt : (%, Integer) -> S
- from Eltable(Integer, S)
- elt : (%, Integer, S) -> S
- from EltableAggregate(Integer, S)
- empty : () -> %
- from Aggregate
- empty? : % -> Boolean
- from Aggregate
- entries : % -> List(S)
- from IndexedAggregate(Integer, S)
- entry? : (S, %) -> Boolean
- from IndexedAggregate(Integer, S)
- enumerate : () -> List(%) if S has Finite
- from Finite
- eq? : (%, %) -> Boolean
- from Aggregate
- eval : (%, S, S) -> % if S has Evalable(S)
- from InnerEvalable(S, S)
- eval : (%, Equation(S)) -> % if S has Evalable(S)
- from Evalable(S)
- eval : (%, List(S), List(S)) -> % if S has Evalable(S)
- from InnerEvalable(S, S)
- eval : (%, List(Equation(S))) -> % if S has Evalable(S)
- from Evalable(S)
- every? : (Mapping(Boolean, S), %) -> Boolean
- from HomogeneousAggregate(S)
- first : % -> S
- from IndexedAggregate(Integer, S)
- hash : % -> SingleInteger if S has Finite
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if S has Finite
- from Hashable
- index : PositiveInteger -> % if S has Finite
- from Finite
- index? : (Integer, %) -> Boolean
- from IndexedAggregate(Integer, S)
- indices : % -> List(Integer)
- from IndexedAggregate(Integer, S)
- inf : (%, %) -> % if S has OrderedAbelianMonoidSup
- from OrderedAbelianMonoidSup
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> % if S has Monoid
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> % if S has SemiGroup
- from Magma
- leftRecip : % -> Union(%, "failed") if S has Monoid
- from MagmaWithUnit
- less? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- lookup : % -> PositiveInteger if S has Finite
- from Finite
- map : (Mapping(S, S), %) -> %
- from HomogeneousAggregate(S)
- max : (%, %) -> %
- from OrderedSet
- max : % -> S
- from HomogeneousAggregate(S)
- max : (Mapping(Boolean, S, S), %) -> S
- from HomogeneousAggregate(S)
- maxIndex : % -> Integer
- from IndexedAggregate(Integer, S)
- member? : (S, %) -> Boolean
- from HomogeneousAggregate(S)
- members : % -> List(S)
- from HomogeneousAggregate(S)
- min : (%, %) -> %
- from OrderedSet
- min : % -> S
- from HomogeneousAggregate(S)
- minIndex : % -> Integer
- from IndexedAggregate(Integer, S)
- more? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- one? : % -> Boolean if S has Monoid
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- parts : % -> List(S)
- from HomogeneousAggregate(S)
- plenaryPower : (%, PositiveInteger) -> % if S has CommutativeRing
- from NonAssociativeAlgebra(S)
- qelt : (%, Integer) -> S
- from EltableAggregate(Integer, S)
- random : () -> % if S has Finite
- from Finite
- recip : % -> Union(%, "failed") if S has Monoid
- from MagmaWithUnit
- reducedSystem : Matrix(%) -> Matrix(S) if S has Ring
- from LinearlyExplicitOver(S)
- reducedSystem : Matrix(%) -> Matrix(Integer) if S has LinearlyExplicitOver(Integer) and S has Ring
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(S), vec : Vector(S)) if S has Ring
- from LinearlyExplicitOver(S)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if S has LinearlyExplicitOver(Integer) and S has Ring
- from LinearlyExplicitOver(Integer)
- retract : % -> S
- from RetractableTo(S)
- retract : % -> Fraction(Integer) if S has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if S has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(S, "failed")
- from RetractableTo(S)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if S has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if S has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> % if S has Monoid
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> % if S has SemiGroup
- from Magma
- rightRecip : % -> Union(%, "failed") if S has Monoid
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- size : () -> NonNegativeInteger if S has Finite
- from Finite
- size? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- smaller? : (%, %) -> Boolean
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed") if S has CancellationAbelianMonoid
- from CancellationAbelianMonoid
- sup : (%, %) -> % if S has OrderedAbelianMonoidSup
- from OrderedAbelianMonoidSup
- unitVector : PositiveInteger -> % if S has Monoid
- from DirectProductCategory(dimtot, S)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
LinearlyExplicitOver(S)
PartialOrder
NonAssociativeSemiRing
BiModule(%, %)
HomogeneousAggregate(S)
ConvertibleTo(InputForm)
DirectProductCategory(dimtot, S)
Rng
CoercibleFrom(Integer)
TwoSidedRecip
SemiRing
Aggregate
DifferentialExtension(S)
unitsKnown
CoercibleTo(Vector(S))
NonAssociativeAlgebra(S)
FullyRetractableTo(S)
LinearlyExplicitOver(Integer)
RetractableTo(Fraction(Integer))
EltableAggregate(Integer, S)
OrderedSet
Magma
SemiGroup
LeftModule(%)
NonAssociativeRing
finiteAggregate
PartialDifferentialRing(Symbol)
RightModule(S)
CoercibleFrom(Fraction(Integer))
Algebra(%)
DifferentialRing
CommutativeRing
Evalable(S)
NonAssociativeSemiRng
CancellationAbelianMonoid
Module(S)
Comparable
RetractableTo(Integer)
OrderedCancellationAbelianMonoid
OrderedAbelianMonoid
SetCategory
InnerEvalable(S, S)
AbelianMonoid
MagmaWithUnit
RightModule(%)
Hashable
CoercibleFrom(S)
CommutativeStar
RetractableTo(S)
LeftModule(S)
OrderedAbelianSemiGroup
Module(%)
CoercibleTo(OutputForm)
Ring
Eltable(Integer, S)
SemiRng
IndexedAggregate(Integer, S)
Monoid
NonAssociativeAlgebra(%)
Finite
Algebra(S)
BiModule(S, S)
BasicType
RightModule(Integer)
OrderedAbelianMonoidSup
AbelianSemiGroup
FullyLinearlyExplicitOver(S)
NonAssociativeRng
AbelianGroup
AbelianProductCategory(S)