XPolynomial(R)

xpoly.spad line 797 [edit on github]

This type supports multivariate polynomials whose set of variables is Symbol. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However, coefficients and variables commute.

* : (%, %) -> %
from Magma
* : (%, R) -> %
from XFreeAlgebra(Symbol, R)
* : (R, %) -> %
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
* : (Symbol, %) -> %
from XFreeAlgebra(Symbol, R)
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
RemainderList : % -> List(Record(k : Symbol, c : %))

^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coef : (%, %) -> R
from XFreeAlgebra(Symbol, R)
coef : (%, FreeMonoid(Symbol)) -> R
from XFreeAlgebra(Symbol, R)
coefficient : (%, FreeMonoid(Symbol)) -> R
from FreeModuleCategory(R, FreeMonoid(Symbol))
coefficients : % -> List(R)
from FreeModuleCategory(R, FreeMonoid(Symbol))
coerce : R -> %
from XAlgebra(R)
coerce : FreeMonoid(Symbol) -> %
from CoercibleFrom(FreeMonoid(Symbol))
coerce : Integer -> %
from NonAssociativeRing
coerce : Symbol -> %
from XFreeAlgebra(Symbol, R)
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
constant : % -> R
from XFreeAlgebra(Symbol, R)
constant? : % -> Boolean
from XFreeAlgebra(Symbol, R)
construct : List(Record(k : FreeMonoid(Symbol), c : R)) -> %
from IndexedProductCategory(R, FreeMonoid(Symbol))
constructOrdered : List(Record(k : FreeMonoid(Symbol), c : R)) -> %
from IndexedProductCategory(R, FreeMonoid(Symbol))
degree : % -> NonNegativeInteger
from XPolynomialsCat(Symbol, R)
expand : % -> XDistributedPolynomial(Symbol, R)

latex : % -> String
from SetCategory
leadingCoefficient : % -> R
from IndexedProductCategory(R, FreeMonoid(Symbol))
leadingMonomial : % -> %
from IndexedProductCategory(R, FreeMonoid(Symbol))
leadingSupport : % -> FreeMonoid(Symbol)
from IndexedProductCategory(R, FreeMonoid(Symbol))
leadingTerm : % -> Record(k : FreeMonoid(Symbol), c : R)
from IndexedProductCategory(R, FreeMonoid(Symbol))
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
linearExtend : (Mapping(R, FreeMonoid(Symbol)), %) -> R if R has CommutativeRing
from FreeModuleCategory(R, FreeMonoid(Symbol))
listOfTerms : % -> List(Record(k : FreeMonoid(Symbol), c : R))
from IndexedDirectProductCategory(R, FreeMonoid(Symbol))
lquo : (%, %) -> %
from XFreeAlgebra(Symbol, R)
lquo : (%, FreeMonoid(Symbol)) -> %
from XFreeAlgebra(Symbol, R)
lquo : (%, Symbol) -> %
from XFreeAlgebra(Symbol, R)
map : (Mapping(R, R), %) -> %
from XFreeAlgebra(Symbol, R)
maxdeg : % -> FreeMonoid(Symbol)
from XPolynomialsCat(Symbol, R)
mindeg : % -> FreeMonoid(Symbol)
from XFreeAlgebra(Symbol, R)
mindegTerm : % -> Record(k : FreeMonoid(Symbol), c : R)
from XFreeAlgebra(Symbol, R)
mirror : % -> %
from XFreeAlgebra(Symbol, R)
monomial : (R, FreeMonoid(Symbol)) -> %
from XFreeAlgebra(Symbol, R)
monomial? : % -> Boolean
from XFreeAlgebra(Symbol, R)
monomials : % -> List(%)
from FreeModuleCategory(R, FreeMonoid(Symbol))
numberOfMonomials : % -> NonNegativeInteger
from IndexedDirectProductCategory(R, FreeMonoid(Symbol))
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing
from NonAssociativeAlgebra(R)
quasiRegular : % -> %
from XFreeAlgebra(Symbol, R)
quasiRegular? : % -> Boolean
from XFreeAlgebra(Symbol, R)
recip : % -> Union(%, "failed")
from MagmaWithUnit
reductum : % -> %
from IndexedProductCategory(R, FreeMonoid(Symbol))
retract : % -> R
from RetractableTo(R)
retract : % -> FreeMonoid(Symbol)
from RetractableTo(FreeMonoid(Symbol))
retractIfCan : % -> Union(R, "failed")
from RetractableTo(R)
retractIfCan : % -> Union(FreeMonoid(Symbol), "failed")
from RetractableTo(FreeMonoid(Symbol))
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
rquo : (%, %) -> %
from XFreeAlgebra(Symbol, R)
rquo : (%, FreeMonoid(Symbol)) -> %
from XFreeAlgebra(Symbol, R)
rquo : (%, Symbol) -> %
from XFreeAlgebra(Symbol, R)
sample : () -> %
from AbelianMonoid
sh : (%, %) -> % if R has CommutativeRing
from XFreeAlgebra(Symbol, R)
sh : (%, NonNegativeInteger) -> % if R has CommutativeRing
from XFreeAlgebra(Symbol, R)
smaller? : (%, %) -> Boolean if R has Comparable
from Comparable
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
support : % -> List(FreeMonoid(Symbol))
from FreeModuleCategory(R, FreeMonoid(Symbol))
trunc : (%, NonNegativeInteger) -> %
from XPolynomialsCat(Symbol, R)
unexpand : XDistributedPolynomial(Symbol, R) -> %

varList : % -> List(Symbol)
from XFreeAlgebra(Symbol, R)
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

Comparable

noZeroDivisors

CoercibleFrom(R)

Algebra(R)

RightModule(%)

Monoid

XPolynomialsCat(Symbol, R)

BiModule(R, R)

NonAssociativeAlgebra(R)

CancellationAbelianMonoid

MagmaWithUnit

NonAssociativeRing

RightModule(R)

LeftModule(%)

LeftModule(R)

CoercibleFrom(FreeMonoid(Symbol))

SetCategory

CoercibleTo(OutputForm)

Rng

SemiGroup

Magma

XAlgebra(R)

Ring

RetractableTo(FreeMonoid(Symbol))

BiModule(%, %)

unitsKnown

AbelianGroup

AbelianSemiGroup

FreeModuleCategory(R, FreeMonoid(Symbol))

XFreeAlgebra(Symbol, R)

NonAssociativeSemiRing

AbelianProductCategory(R)

IndexedProductCategory(R, FreeMonoid(Symbol))

Module(R)

IndexedDirectProductCategory(R, FreeMonoid(Symbol))

RetractableTo(R)

NonAssociativeRng

SemiRng

AbelianMonoid

NonAssociativeSemiRng

BasicType

SemiRing