DirectProductMatrixModule(n, R, M, S)

vector.spad line 564 [edit on github]

This constructor provides a direct product type with a left matrix-module view.

# : % -> NonNegativeInteger
from Aggregate
* : (%, %) -> % if S has SemiGroup
from Magma
* : (%, S) -> % if S has SemiGroup
from DirectProductCategory(n, S)
* : (%, Integer) -> % if S has LinearlyExplicitOver(Integer) and S has Ring
from RightModule(Integer)
* : (M, %) -> %
from LeftModule(M)
* : (R, %) -> %
from LeftModule(R)
* : (S, %) -> % if S has SemiGroup
from DirectProductCategory(n, S)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> % if S has Monoid
from MagmaWithUnit
< : (%, %) -> Boolean if S has OrderedSet
from PartialOrder
<= : (%, %) -> Boolean if S has OrderedSet
from PartialOrder
= : (%, %) -> Boolean
from BasicType
> : (%, %) -> Boolean if S has OrderedSet
from PartialOrder
>= : (%, %) -> Boolean if S has OrderedSet
from PartialOrder
D : % -> % if S has DifferentialRing and S has Ring
from DifferentialRing
D : (%, List(Symbol)) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
from PartialDifferentialRing(Symbol)
D : (%, List(Symbol), List(NonNegativeInteger)) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
from PartialDifferentialRing(Symbol)
D : (%, Mapping(S, S)) -> % if S has Ring
from DifferentialExtension(S)
D : (%, Mapping(S, S), NonNegativeInteger) -> % if S has Ring
from DifferentialExtension(S)
D : (%, NonNegativeInteger) -> % if S has DifferentialRing and S has Ring
from DifferentialRing
D : (%, Symbol) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
from PartialDifferentialRing(Symbol)
D : (%, Symbol, NonNegativeInteger) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
from PartialDifferentialRing(Symbol)
^ : (%, NonNegativeInteger) -> % if S has Monoid
from MagmaWithUnit
^ : (%, PositiveInteger) -> % if S has SemiGroup
from Magma
annihilate? : (%, %) -> Boolean if S has Ring
from Rng
antiCommutator : (%, %) -> % if S has SemiRng
from NonAssociativeSemiRng
any? : (Mapping(Boolean, S), %) -> Boolean
from HomogeneousAggregate(S)
associator : (%, %, %) -> % if S has Ring
from NonAssociativeRng
characteristic : () -> NonNegativeInteger if S has Ring
from NonAssociativeRing
coerce : % -> % if S has CommutativeRing
from Algebra(%)
coerce : S -> %
from Algebra(S)
coerce : Fraction(Integer) -> % if S has RetractableTo(Fraction(Integer))
from CoercibleFrom(Fraction(Integer))
coerce : Integer -> % if S has Ring or S has RetractableTo(Integer)
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
coerce : % -> Vector(S)
from CoercibleTo(Vector(S))
commutator : (%, %) -> % if S has Ring
from NonAssociativeRng
convert : % -> InputForm if S has Finite
from ConvertibleTo(InputForm)
copy : % -> %
from Aggregate
count : (S, %) -> NonNegativeInteger
from HomogeneousAggregate(S)
count : (Mapping(Boolean, S), %) -> NonNegativeInteger
from HomogeneousAggregate(S)
differentiate : % -> % if S has DifferentialRing and S has Ring
from DifferentialRing
differentiate : (%, List(Symbol)) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
from PartialDifferentialRing(Symbol)
differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
from PartialDifferentialRing(Symbol)
differentiate : (%, Mapping(S, S)) -> % if S has Ring
from DifferentialExtension(S)
differentiate : (%, Mapping(S, S), NonNegativeInteger) -> % if S has Ring
from DifferentialExtension(S)
differentiate : (%, NonNegativeInteger) -> % if S has DifferentialRing and S has Ring
from DifferentialRing
differentiate : (%, Symbol) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
from PartialDifferentialRing(Symbol)
differentiate : (%, Symbol, NonNegativeInteger) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
from PartialDifferentialRing(Symbol)
directProduct : Vector(S) -> %
from DirectProductCategory(n, S)
dot : (%, %) -> S if S has SemiRng
from DirectProductCategory(n, S)
elt : (%, Integer) -> S
from Eltable(Integer, S)
elt : (%, Integer, S) -> S
from EltableAggregate(Integer, S)
empty : () -> %
from Aggregate
empty? : % -> Boolean
from Aggregate
entries : % -> List(S)
from IndexedAggregate(Integer, S)
entry? : (S, %) -> Boolean
from IndexedAggregate(Integer, S)
enumerate : () -> List(%) if S has Finite
from Finite
eq? : (%, %) -> Boolean
from Aggregate
eval : (%, S, S) -> % if S has Evalable(S)
from InnerEvalable(S, S)
eval : (%, Equation(S)) -> % if S has Evalable(S)
from Evalable(S)
eval : (%, List(S), List(S)) -> % if S has Evalable(S)
from InnerEvalable(S, S)
eval : (%, List(Equation(S))) -> % if S has Evalable(S)
from Evalable(S)
every? : (Mapping(Boolean, S), %) -> Boolean
from HomogeneousAggregate(S)
first : % -> S
from IndexedAggregate(Integer, S)
hash : % -> SingleInteger if S has Finite
from Hashable
hashUpdate! : (HashState, %) -> HashState if S has Finite
from Hashable
index : PositiveInteger -> % if S has Finite
from Finite
index? : (Integer, %) -> Boolean
from IndexedAggregate(Integer, S)
indices : % -> List(Integer)
from IndexedAggregate(Integer, S)
inf : (%, %) -> % if S has OrderedAbelianMonoidSup
from OrderedAbelianMonoidSup
latex : % -> String
from SetCategory
leftPower : (%, NonNegativeInteger) -> % if S has Monoid
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> % if S has SemiGroup
from Magma
leftRecip : % -> Union(%, "failed") if S has Monoid
from MagmaWithUnit
less? : (%, NonNegativeInteger) -> Boolean
from Aggregate
lookup : % -> PositiveInteger if S has Finite
from Finite
map : (Mapping(S, S), %) -> %
from HomogeneousAggregate(S)
max : (%, %) -> % if S has OrderedSet
from OrderedSet
max : % -> S if S has OrderedSet
from HomogeneousAggregate(S)
max : (Mapping(Boolean, S, S), %) -> S
from HomogeneousAggregate(S)
maxIndex : % -> Integer
from IndexedAggregate(Integer, S)
member? : (S, %) -> Boolean
from HomogeneousAggregate(S)
members : % -> List(S)
from HomogeneousAggregate(S)
min : (%, %) -> % if S has OrderedSet
from OrderedSet
min : % -> S if S has OrderedSet
from HomogeneousAggregate(S)
minIndex : % -> Integer
from IndexedAggregate(Integer, S)
more? : (%, NonNegativeInteger) -> Boolean
from Aggregate
one? : % -> Boolean if S has Monoid
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
parts : % -> List(S)
from HomogeneousAggregate(S)
plenaryPower : (%, PositiveInteger) -> % if S has CommutativeRing
from NonAssociativeAlgebra(S)
qelt : (%, Integer) -> S
from EltableAggregate(Integer, S)
random : () -> % if S has Finite
from Finite
recip : % -> Union(%, "failed") if S has Monoid
from MagmaWithUnit
reducedSystem : Matrix(%) -> Matrix(S) if S has Ring
from LinearlyExplicitOver(S)
reducedSystem : Matrix(%) -> Matrix(Integer) if S has LinearlyExplicitOver(Integer) and S has Ring
from LinearlyExplicitOver(Integer)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(S), vec : Vector(S)) if S has Ring
from LinearlyExplicitOver(S)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if S has LinearlyExplicitOver(Integer) and S has Ring
from LinearlyExplicitOver(Integer)
retract : % -> S
from RetractableTo(S)
retract : % -> Fraction(Integer) if S has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retract : % -> Integer if S has RetractableTo(Integer)
from RetractableTo(Integer)
retractIfCan : % -> Union(S, "failed")
from RetractableTo(S)
retractIfCan : % -> Union(Fraction(Integer), "failed") if S has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retractIfCan : % -> Union(Integer, "failed") if S has RetractableTo(Integer)
from RetractableTo(Integer)
rightPower : (%, NonNegativeInteger) -> % if S has Monoid
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> % if S has SemiGroup
from Magma
rightRecip : % -> Union(%, "failed") if S has Monoid
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
size : () -> NonNegativeInteger if S has Finite
from Finite
size? : (%, NonNegativeInteger) -> Boolean
from Aggregate
smaller? : (%, %) -> Boolean if S has Finite or S has OrderedSet
from Comparable
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
sup : (%, %) -> % if S has OrderedAbelianMonoidSup
from OrderedAbelianMonoidSup
unitVector : PositiveInteger -> % if S has Monoid
from DirectProductCategory(n, S)
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

LeftModule(M)

LinearlyExplicitOver(S)

PartialOrder

NonAssociativeSemiRing

LeftModule(R)

BiModule(%, %)

HomogeneousAggregate(S)

ConvertibleTo(InputForm)

Rng

CoercibleFrom(Integer)

TwoSidedRecip

SemiRing

DifferentialExtension(S)

unitsKnown

CoercibleTo(Vector(S))

NonAssociativeAlgebra(S)

FullyRetractableTo(S)

LinearlyExplicitOver(Integer)

RetractableTo(Fraction(Integer))

EltableAggregate(Integer, S)

OrderedSet

Magma

SemiGroup

LeftModule(%)

NonAssociativeRing

finiteAggregate

PartialDifferentialRing(Symbol)

RightModule(S)

Algebra(%)

DirectProductCategory(n, S)

CoercibleFrom(Fraction(Integer))

DifferentialRing

CommutativeRing

Evalable(S)

NonAssociativeSemiRng

CancellationAbelianMonoid

Module(S)

Comparable

RetractableTo(Integer)

OrderedCancellationAbelianMonoid

OrderedAbelianMonoid

InnerEvalable(S, S)

AbelianMonoid

MagmaWithUnit

RightModule(%)

Hashable

CoercibleFrom(S)

CommutativeStar

RetractableTo(S)

LeftModule(S)

OrderedAbelianSemiGroup

Module(%)

CoercibleTo(OutputForm)

Ring

Eltable(Integer, S)

SemiRng

IndexedAggregate(Integer, S)

Monoid

NonAssociativeAlgebra(%)

Finite

Aggregate

BiModule(S, S)

BasicType

RightModule(Integer)

OrderedAbelianMonoidSup

AbelianSemiGroup

SetCategory

FullyLinearlyExplicitOver(S)

NonAssociativeRng

Algebra(S)

AbelianGroup

AbelianProductCategory(S)