DirectProductMatrixModule(n, R, M, S)
vector.spad line 564
[edit on github]
This constructor provides a direct product type with a left matrix-module view.
- # : % -> NonNegativeInteger
- from Aggregate
- * : (%, %) -> % if S has SemiGroup
- from Magma
- * : (%, S) -> % if S has SemiGroup
- from DirectProductCategory(n, S)
- * : (%, Integer) -> % if S has LinearlyExplicitOver(Integer) and S has Ring
- from RightModule(Integer)
- * : (M, %) -> %
- from LeftModule(M)
- * : (R, %) -> %
- from LeftModule(R)
- * : (S, %) -> % if S has SemiGroup
- from DirectProductCategory(n, S)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> % if S has Monoid
- from MagmaWithUnit
- < : (%, %) -> Boolean if S has OrderedSet
- from PartialOrder
- <= : (%, %) -> Boolean if S has OrderedSet
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean if S has OrderedSet
- from PartialOrder
- >= : (%, %) -> Boolean if S has OrderedSet
- from PartialOrder
- D : % -> % if S has DifferentialRing and S has Ring
- from DifferentialRing
- D : (%, List(Symbol)) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, Mapping(S, S)) -> % if S has Ring
- from DifferentialExtension(S)
- D : (%, Mapping(S, S), NonNegativeInteger) -> % if S has Ring
- from DifferentialExtension(S)
- D : (%, NonNegativeInteger) -> % if S has DifferentialRing and S has Ring
- from DifferentialRing
- D : (%, Symbol) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
- from PartialDifferentialRing(Symbol)
- ^ : (%, NonNegativeInteger) -> % if S has Monoid
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> % if S has SemiGroup
- from Magma
- annihilate? : (%, %) -> Boolean if S has Ring
- from Rng
- antiCommutator : (%, %) -> % if S has SemiRng
- from NonAssociativeSemiRng
- any? : (Mapping(Boolean, S), %) -> Boolean
- from HomogeneousAggregate(S)
- associator : (%, %, %) -> % if S has Ring
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger if S has Ring
- from NonAssociativeRing
- coerce : % -> % if S has CommutativeRing
- from Algebra(%)
- coerce : S -> %
- from Algebra(S)
- coerce : Fraction(Integer) -> % if S has RetractableTo(Fraction(Integer))
- from CoercibleFrom(Fraction(Integer))
- coerce : Integer -> % if S has Ring or S has RetractableTo(Integer)
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- coerce : % -> Vector(S)
- from CoercibleTo(Vector(S))
- commutator : (%, %) -> % if S has Ring
- from NonAssociativeRng
- convert : % -> InputForm if S has Finite
- from ConvertibleTo(InputForm)
- copy : % -> %
- from Aggregate
- count : (S, %) -> NonNegativeInteger
- from HomogeneousAggregate(S)
- count : (Mapping(Boolean, S), %) -> NonNegativeInteger
- from HomogeneousAggregate(S)
- differentiate : % -> % if S has DifferentialRing and S has Ring
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Mapping(S, S)) -> % if S has Ring
- from DifferentialExtension(S)
- differentiate : (%, Mapping(S, S), NonNegativeInteger) -> % if S has Ring
- from DifferentialExtension(S)
- differentiate : (%, NonNegativeInteger) -> % if S has DifferentialRing and S has Ring
- from DifferentialRing
- differentiate : (%, Symbol) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if S has PartialDifferentialRing(Symbol) and S has Ring
- from PartialDifferentialRing(Symbol)
- directProduct : Vector(S) -> %
- from DirectProductCategory(n, S)
- dot : (%, %) -> S if S has SemiRng
- from DirectProductCategory(n, S)
- elt : (%, Integer) -> S
- from Eltable(Integer, S)
- elt : (%, Integer, S) -> S
- from EltableAggregate(Integer, S)
- empty : () -> %
- from Aggregate
- empty? : % -> Boolean
- from Aggregate
- entries : % -> List(S)
- from IndexedAggregate(Integer, S)
- entry? : (S, %) -> Boolean
- from IndexedAggregate(Integer, S)
- enumerate : () -> List(%) if S has Finite
- from Finite
- eq? : (%, %) -> Boolean
- from Aggregate
- eval : (%, S, S) -> % if S has Evalable(S)
- from InnerEvalable(S, S)
- eval : (%, Equation(S)) -> % if S has Evalable(S)
- from Evalable(S)
- eval : (%, List(S), List(S)) -> % if S has Evalable(S)
- from InnerEvalable(S, S)
- eval : (%, List(Equation(S))) -> % if S has Evalable(S)
- from Evalable(S)
- every? : (Mapping(Boolean, S), %) -> Boolean
- from HomogeneousAggregate(S)
- first : % -> S
- from IndexedAggregate(Integer, S)
- hash : % -> SingleInteger if S has Finite
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if S has Finite
- from Hashable
- index : PositiveInteger -> % if S has Finite
- from Finite
- index? : (Integer, %) -> Boolean
- from IndexedAggregate(Integer, S)
- indices : % -> List(Integer)
- from IndexedAggregate(Integer, S)
- inf : (%, %) -> % if S has OrderedAbelianMonoidSup
- from OrderedAbelianMonoidSup
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> % if S has Monoid
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> % if S has SemiGroup
- from Magma
- leftRecip : % -> Union(%, "failed") if S has Monoid
- from MagmaWithUnit
- less? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- lookup : % -> PositiveInteger if S has Finite
- from Finite
- map : (Mapping(S, S), %) -> %
- from HomogeneousAggregate(S)
- max : (%, %) -> % if S has OrderedSet
- from OrderedSet
- max : % -> S if S has OrderedSet
- from HomogeneousAggregate(S)
- max : (Mapping(Boolean, S, S), %) -> S
- from HomogeneousAggregate(S)
- maxIndex : % -> Integer
- from IndexedAggregate(Integer, S)
- member? : (S, %) -> Boolean
- from HomogeneousAggregate(S)
- members : % -> List(S)
- from HomogeneousAggregate(S)
- min : (%, %) -> % if S has OrderedSet
- from OrderedSet
- min : % -> S if S has OrderedSet
- from HomogeneousAggregate(S)
- minIndex : % -> Integer
- from IndexedAggregate(Integer, S)
- more? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- one? : % -> Boolean if S has Monoid
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- parts : % -> List(S)
- from HomogeneousAggregate(S)
- plenaryPower : (%, PositiveInteger) -> % if S has CommutativeRing
- from NonAssociativeAlgebra(S)
- qelt : (%, Integer) -> S
- from EltableAggregate(Integer, S)
- random : () -> % if S has Finite
- from Finite
- recip : % -> Union(%, "failed") if S has Monoid
- from MagmaWithUnit
- reducedSystem : Matrix(%) -> Matrix(S) if S has Ring
- from LinearlyExplicitOver(S)
- reducedSystem : Matrix(%) -> Matrix(Integer) if S has LinearlyExplicitOver(Integer) and S has Ring
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(S), vec : Vector(S)) if S has Ring
- from LinearlyExplicitOver(S)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if S has LinearlyExplicitOver(Integer) and S has Ring
- from LinearlyExplicitOver(Integer)
- retract : % -> S
- from RetractableTo(S)
- retract : % -> Fraction(Integer) if S has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if S has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(S, "failed")
- from RetractableTo(S)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if S has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if S has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> % if S has Monoid
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> % if S has SemiGroup
- from Magma
- rightRecip : % -> Union(%, "failed") if S has Monoid
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- size : () -> NonNegativeInteger if S has Finite
- from Finite
- size? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- smaller? : (%, %) -> Boolean if S has Finite or S has OrderedSet
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- sup : (%, %) -> % if S has OrderedAbelianMonoidSup
- from OrderedAbelianMonoidSup
- unitVector : PositiveInteger -> % if S has Monoid
- from DirectProductCategory(n, S)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
LeftModule(M)
LinearlyExplicitOver(S)
PartialOrder
NonAssociativeSemiRing
LeftModule(R)
BiModule(%, %)
HomogeneousAggregate(S)
ConvertibleTo(InputForm)
Rng
CoercibleFrom(Integer)
TwoSidedRecip
SemiRing
DifferentialExtension(S)
unitsKnown
CoercibleTo(Vector(S))
NonAssociativeAlgebra(S)
FullyRetractableTo(S)
LinearlyExplicitOver(Integer)
RetractableTo(Fraction(Integer))
EltableAggregate(Integer, S)
OrderedSet
Magma
SemiGroup
LeftModule(%)
NonAssociativeRing
finiteAggregate
PartialDifferentialRing(Symbol)
RightModule(S)
Algebra(%)
DirectProductCategory(n, S)
CoercibleFrom(Fraction(Integer))
DifferentialRing
CommutativeRing
Evalable(S)
NonAssociativeSemiRng
CancellationAbelianMonoid
Module(S)
Comparable
RetractableTo(Integer)
OrderedCancellationAbelianMonoid
OrderedAbelianMonoid
InnerEvalable(S, S)
AbelianMonoid
MagmaWithUnit
RightModule(%)
Hashable
CoercibleFrom(S)
CommutativeStar
RetractableTo(S)
LeftModule(S)
OrderedAbelianSemiGroup
Module(%)
CoercibleTo(OutputForm)
Ring
Eltable(Integer, S)
SemiRng
IndexedAggregate(Integer, S)
Monoid
NonAssociativeAlgebra(%)
Finite
Aggregate
BiModule(S, S)
BasicType
RightModule(Integer)
OrderedAbelianMonoidSup
AbelianSemiGroup
SetCategory
FullyLinearlyExplicitOver(S)
NonAssociativeRng
Algebra(S)
AbelianGroup
AbelianProductCategory(S)