InnerSparseUnivariatePowerSeries(Coef)
sups.spad line 1
[edit on github]
InnerSparseUnivariatePowerSeries is an internal domain used for creating sparse Taylor and Laurent series.
- * : (%, %) -> %
- from Magma
- * : (%, Coef) -> %
- from RightModule(Coef)
- * : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (Coef, %) -> %
- from LeftModule(Coef)
- * : (Fraction(Integer), %) -> % if Coef has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, Coef) -> % if Coef has Field
- from AbelianMonoidRing(Coef, Integer)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : % -> % if Coef has * : (Integer, Coef) -> Coef
- from DifferentialRing
- D : (%, List(Symbol)) -> % if Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, NonNegativeInteger) -> % if Coef has * : (Integer, Coef) -> Coef
- from DifferentialRing
- D : (%, Symbol) -> % if Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- approximate : (%, Integer) -> Coef if Coef has coerce : Symbol -> Coef and Coef has ^ : (Coef, Integer) -> Coef
- from UnivariatePowerSeriesCategory(Coef, Integer)
- associates? : (%, %) -> Boolean if Coef has IntegralDomain
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- cAcos : % -> % if Coef has Algebra(Fraction(Integer))
cAcos(f)
computes the arccosine of the power series f
. For use when the coefficient ring is commutative.
- cAcosh : % -> % if Coef has Algebra(Fraction(Integer))
cAcosh(f)
computes the inverse hyperbolic cosine of the power series f
. For use when the coefficient ring is commutative.
- cAcot : % -> % if Coef has Algebra(Fraction(Integer))
cAcot(f)
computes the arccotangent of the power series f
. For use when the coefficient ring is commutative.
- cAcoth : % -> % if Coef has Algebra(Fraction(Integer))
cAcoth(f)
computes the inverse hyperbolic cotangent of the power series f
. For use when the coefficient ring is commutative.
- cAcsc : % -> % if Coef has Algebra(Fraction(Integer))
cAcsc(f)
computes the arccosecant of the power series f
. For use when the coefficient ring is commutative.
- cAcsch : % -> % if Coef has Algebra(Fraction(Integer))
cAcsch(f)
computes the inverse hyperbolic cosecant of the power series f
. For use when the coefficient ring is commutative.
- cAsec : % -> % if Coef has Algebra(Fraction(Integer))
cAsec(f)
computes the arcsecant of the power series f
. For use when the coefficient ring is commutative.
- cAsech : % -> % if Coef has Algebra(Fraction(Integer))
cAsech(f)
computes the inverse hyperbolic secant of the power series f
. For use when the coefficient ring is commutative.
- cAsin : % -> % if Coef has Algebra(Fraction(Integer))
cAsin(f)
computes the arcsine of the power series f
. For use when the coefficient ring is commutative.
- cAsinh : % -> % if Coef has Algebra(Fraction(Integer))
cAsinh(f)
computes the inverse hyperbolic sine of the power series f
. For use when the coefficient ring is commutative.
- cAtan : % -> % if Coef has Algebra(Fraction(Integer))
cAtan(f)
computes the arctangent of the power series f
. For use when the coefficient ring is commutative.
- cAtanh : % -> % if Coef has Algebra(Fraction(Integer))
cAtanh(f)
computes the inverse hyperbolic tangent of the power series f
. For use when the coefficient ring is commutative.
- cCos : % -> % if Coef has Algebra(Fraction(Integer))
cCos(f)
computes the cosine of the power series f
. For use when the coefficient ring is commutative.
- cCosh : % -> % if Coef has Algebra(Fraction(Integer))
cCosh(f)
computes the hyperbolic cosine of the power series f
. For use when the coefficient ring is commutative.
- cCot : % -> % if Coef has Algebra(Fraction(Integer))
cCot(f)
computes the cotangent of the power series f
. For use when the coefficient ring is commutative.
- cCoth : % -> % if Coef has Algebra(Fraction(Integer))
cCoth(f)
computes the hyperbolic cotangent of the power series f
. For use when the coefficient ring is commutative.
- cCsc : % -> % if Coef has Algebra(Fraction(Integer))
cCsc(f)
computes the cosecant of the power series f
. For use when the coefficient ring is commutative.
- cCsch : % -> % if Coef has Algebra(Fraction(Integer))
cCsch(f)
computes the hyperbolic cosecant of the power series f
. For use when the coefficient ring is commutative.
- cExp : % -> % if Coef has Algebra(Fraction(Integer))
cExp(f)
computes the exponential of the power series f
. For use when the coefficient ring is commutative.
- cLog : % -> % if Coef has Algebra(Fraction(Integer))
cLog(f)
computes the logarithm of the power series f
. For use when the coefficient ring is commutative.
- cPower : (%, Coef) -> % if Coef has Algebra(Fraction(Integer))
cPower(f, r)
computes f^r
, where f
has constant coefficient 1. For use when the coefficient ring is commutative.
- cRationalPower : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
cRationalPower(f, r)
computes f^r
. For use when the coefficient ring is commutative.
- cSec : % -> % if Coef has Algebra(Fraction(Integer))
cSec(f)
computes the secant of the power series f
. For use when the coefficient ring is commutative.
- cSech : % -> % if Coef has Algebra(Fraction(Integer))
cSech(f)
computes the hyperbolic secant of the power series f
. For use when the coefficient ring is commutative.
- cSin : % -> % if Coef has Algebra(Fraction(Integer))
cSin(f)
computes the sine of the power series f
. For use when the coefficient ring is commutative.
- cSinh : % -> % if Coef has Algebra(Fraction(Integer))
cSinh(f)
computes the hyperbolic sine of the power series f
. For use when the coefficient ring is commutative.
- cTan : % -> % if Coef has Algebra(Fraction(Integer))
cTan(f)
computes the tangent of the power series f
. For use when the coefficient ring is commutative.
- cTanh : % -> % if Coef has Algebra(Fraction(Integer))
cTanh(f)
computes the hyperbolic tangent of the power series f
. For use when the coefficient ring is commutative.
- center : % -> Coef
- from UnivariatePowerSeriesCategory(Coef, Integer)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if Coef has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, Integer) -> Coef
- from AbelianMonoidRing(Coef, Integer)
- coerce : % -> % if Coef has CommutativeRing
- from Algebra(%)
- coerce : Coef -> % if Coef has CommutativeRing
- from Algebra(Coef)
- coerce : Fraction(Integer) -> % if Coef has Algebra(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- complete : % -> %
- from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
- construct : List(Record(k : Integer, c : Coef)) -> %
- from IndexedProductCategory(Coef, Integer)
- constructOrdered : List(Record(k : Integer, c : Coef)) -> %
- from IndexedProductCategory(Coef, Integer)
- degree : % -> Integer
- from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
- differentiate : % -> % if Coef has * : (Integer, Coef) -> Coef
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> % if Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, NonNegativeInteger) -> % if Coef has * : (Integer, Coef) -> Coef
- from DifferentialRing
- differentiate : (%, Symbol) -> % if Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- elt : (%, %) -> %
- from Eltable(%, %)
- elt : (%, Integer) -> Coef
- from UnivariatePowerSeriesCategory(Coef, Integer)
- eval : (%, Coef) -> Stream(Coef) if Coef has ^ : (Coef, Integer) -> Coef
- from UnivariatePowerSeriesCategory(Coef, Integer)
- exquo : (%, %) -> Union(%, "failed") if Coef has IntegralDomain
- from EntireRing
- extend : (%, Integer) -> %
- from UnivariatePowerSeriesCategory(Coef, Integer)
- getRef : % -> Reference(OrderedCompletion(Integer))
getRef(f)
returns a reference containing the order to which the terms of f
have been computed.
- getStream : % -> Stream(Record(k : Integer, c : Coef))
getStream(f)
returns the stream of terms representing the series f
.
- iCompose : (%, %) -> %
iCompose(f, g)
returns f(g(x))
. This is an internal function which should only be called for Taylor series f(x)
and g(x)
such that the constant coefficient of g(x)
is zero.
- iExquo : (%, %, Boolean) -> Union(%, "failed")
iExquo(f, g, taylor?)
is the quotient of the power series f
and g
. If taylor?
is true
, then we must have order(f) >= order(g)
.
- integrate : % -> % if Coef has Algebra(Fraction(Integer))
integrate(f(x))
returns an anti-derivative of the power series f(x)
with constant coefficient 0. Warning: function does not check for a term of degree -1
.
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> Coef
- from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
- leadingMonomial : % -> %
- from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
- leadingSupport : % -> Integer
- from IndexedProductCategory(Coef, Integer)
- leadingTerm : % -> Record(k : Integer, c : Coef)
- from IndexedProductCategory(Coef, Integer)
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- makeSeries : (Reference(OrderedCompletion(Integer)), Stream(Record(k : Integer, c : Coef))) -> %
makeSeries(refer, str)
creates a power series from the reference refer
and the stream str
.
- map : (Mapping(Coef, Coef), %) -> %
- from IndexedProductCategory(Coef, Integer)
- monomial : (Coef, Integer) -> %
- from IndexedProductCategory(Coef, Integer)
- monomial? : % -> Boolean
monomial?(f)
tests if f
is a single monomial.
- multiplyCoefficients : (Mapping(Coef, Integer), %) -> %
multiplyCoefficients(fn, f)
returns the series sum(fn(n) * an * x^n, n = n0..)
, where f
is the series sum(an * x^n, n = n0..)
.
- multiplyExponents : (%, PositiveInteger) -> %
- from UnivariatePowerSeriesCategory(Coef, Integer)
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : % -> Integer
- from UnivariatePowerSeriesCategory(Coef, Integer)
- order : (%, Integer) -> Integer
- from UnivariatePowerSeriesCategory(Coef, Integer)
- plenaryPower : (%, PositiveInteger) -> % if Coef has CommutativeRing or Coef has Algebra(Fraction(Integer))
- from NonAssociativeAlgebra(Coef)
- pole? : % -> Boolean
- from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reductum : % -> %
- from IndexedProductCategory(Coef, Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- series : Stream(Record(k : Integer, c : Coef)) -> %
series(st)
creates a series from a stream of non-zero terms, where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.
- seriesToOutputForm : (Stream(Record(k : Integer, c : Coef)), Reference(OrderedCompletion(Integer)), Symbol, Coef, Fraction(Integer)) -> OutputForm
seriesToOutputForm(st, refer, var, cen, r)
prints the series f((var - cen)^r)
.
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- taylorQuoByVar : % -> %
taylorQuoByVar(a0 + a1 x + a2 x^2 + ...)
returns a1 + a2 x + a3 x^2 + ...
- terms : % -> Stream(Record(k : Integer, c : Coef))
- from UnivariatePowerSeriesCategory(Coef, Integer)
- truncate : (%, Integer) -> %
- from UnivariatePowerSeriesCategory(Coef, Integer)
- truncate : (%, Integer, Integer) -> %
- from UnivariatePowerSeriesCategory(Coef, Integer)
- unit? : % -> Boolean if Coef has IntegralDomain
- from EntireRing
- unitCanonical : % -> % if Coef has IntegralDomain
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if Coef has IntegralDomain
- from EntireRing
- variable : % -> Symbol
- from UnivariatePowerSeriesCategory(Coef, Integer)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Module(Fraction(Integer))
NonAssociativeAlgebra(Coef)
Module(Coef)
NonAssociativeSemiRing
AbelianMonoidRing(Coef, Integer)
BiModule(%, %)
Rng
TwoSidedRecip
RightModule(Coef)
PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
NonAssociativeAlgebra(Fraction(Integer))
CharacteristicNonZero
unitsKnown
IndexedProductCategory(Coef, Integer)
MagmaWithUnit
AbelianProductCategory(Coef)
Magma
SemiGroup
IntegralDomain
LeftModule(%)
UnivariatePowerSeriesCategory(Coef, Integer)
NonAssociativeRing
PartialDifferentialRing(Symbol)
CharacteristicZero
Algebra(%)
DifferentialRing
RightModule(Fraction(Integer))
CommutativeRing
Eltable(%, %)
NonAssociativeSemiRng
EntireRing
CancellationAbelianMonoid
VariablesCommuteWithCoefficients
SemiRing
CommutativeStar
AbelianMonoid
RightModule(%)
BiModule(Coef, Coef)
LeftModule(Coef)
Module(%)
CoercibleTo(OutputForm)
Algebra(Coef)
SemiRng
Monoid
NonAssociativeAlgebra(%)
Algebra(Fraction(Integer))
BasicType
Ring
LeftModule(Fraction(Integer))
AbelianSemiGroup
SetCategory
noZeroDivisors
NonAssociativeRng
BiModule(Fraction(Integer), Fraction(Integer))
AbelianGroup