Interval(R)

interval.spad line 41 [edit on github]

+ Author: Mike Dewar + Date Created: November 1996 + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.

* : (%, %) -> %
from Magma
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
< : (%, %) -> Boolean
from PartialOrder
<= : (%, %) -> Boolean
from PartialOrder
= : (%, %) -> Boolean
from BasicType
> : (%, %) -> Boolean
from PartialOrder
>= : (%, %) -> Boolean
from PartialOrder
^ : (%, %) -> %
from ElementaryFunctionCategory
^ : (%, Fraction(Integer)) -> %
from RadicalCategory
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
acos : % -> %
from ArcTrigonometricFunctionCategory
acosh : % -> %
from ArcHyperbolicFunctionCategory
acot : % -> %
from ArcTrigonometricFunctionCategory
acoth : % -> %
from ArcHyperbolicFunctionCategory
acsc : % -> %
from ArcTrigonometricFunctionCategory
acsch : % -> %
from ArcHyperbolicFunctionCategory
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
asec : % -> %
from ArcTrigonometricFunctionCategory
asech : % -> %
from ArcHyperbolicFunctionCategory
asin : % -> %
from ArcTrigonometricFunctionCategory
asinh : % -> %
from ArcHyperbolicFunctionCategory
associates? : (%, %) -> Boolean
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
atan : % -> %
from ArcTrigonometricFunctionCategory
atanh : % -> %
from ArcHyperbolicFunctionCategory
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : % -> %
from Algebra(%)
coerce : Integer -> %
from CoercibleFrom(Integer)
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
contains? : (%, R) -> Boolean
from IntervalCategory(R)
cos : % -> %
from TrigonometricFunctionCategory
cosh : % -> %
from HyperbolicFunctionCategory
cot : % -> %
from TrigonometricFunctionCategory
coth : % -> %
from HyperbolicFunctionCategory
csc : % -> %
from TrigonometricFunctionCategory
csch : % -> %
from HyperbolicFunctionCategory
exp : % -> %
from ElementaryFunctionCategory
exquo : (%, %) -> Union(%, "failed")
from EntireRing
gcd : (%, %) -> %
from GcdDomain
gcd : List(%) -> %
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
from GcdDomain
inf : % -> R
from IntervalCategory(R)
interval : R -> %
from IntervalCategory(R)
interval : (R, R) -> %
from IntervalCategory(R)
interval : Fraction(Integer) -> %
from IntervalCategory(R)
latex : % -> String
from SetCategory
lcm : (%, %) -> %
from GcdDomain
lcm : List(%) -> %
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
from LeftOreRing
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
log : % -> %
from ElementaryFunctionCategory
max : (%, %) -> %
from OrderedSet
min : (%, %) -> %
from OrderedSet
negative? : % -> Boolean
from IntervalCategory(R)
nthRoot : (%, Integer) -> %
from RadicalCategory
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
pi : () -> %
from TranscendentalFunctionCategory
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
positive? : % -> Boolean
from IntervalCategory(R)
qinterval : (R, R) -> %
from IntervalCategory(R)
recip : % -> Union(%, "failed")
from MagmaWithUnit
retract : % -> Integer
from RetractableTo(Integer)
retractIfCan : % -> Union(Integer, "failed")
from RetractableTo(Integer)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
sec : % -> %
from TrigonometricFunctionCategory
sech : % -> %
from HyperbolicFunctionCategory
sin : % -> %
from TrigonometricFunctionCategory
sinh : % -> %
from HyperbolicFunctionCategory
smaller? : (%, %) -> Boolean
from Comparable
sqrt : % -> %
from RadicalCategory
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
sup : % -> R
from IntervalCategory(R)
tan : % -> %
from TrigonometricFunctionCategory
tanh : % -> %
from HyperbolicFunctionCategory
unit? : % -> Boolean
from EntireRing
unitCanonical : % -> %
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %)
from EntireRing
width : % -> R
from IntervalCategory(R)
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

IntegralDomain

Comparable

ElementaryFunctionCategory

Algebra(%)

noZeroDivisors

RightModule(%)

GcdDomain

Monoid

TranscendentalFunctionCategory

ArcTrigonometricFunctionCategory

CancellationAbelianMonoid

MagmaWithUnit

RetractableTo(Integer)

NonAssociativeAlgebra(%)

RadicalCategory

OrderedSet

Module(%)

SetCategory

LeftOreRing

TrigonometricFunctionCategory

CoercibleTo(OutputForm)

LeftModule(%)

CommutativeRing

TwoSidedRecip

Magma

NonAssociativeRing

SemiGroup

IntervalCategory(R)

Rng

PartialOrder

ArcHyperbolicFunctionCategory

CoercibleFrom(Integer)

unitsKnown

AbelianGroup

AbelianSemiGroup

AbelianMonoid

CommutativeStar

NonAssociativeSemiRing

Approximate

BiModule(%, %)

NonAssociativeRng

HyperbolicFunctionCategory

Ring

SemiRng

EntireRing

NonAssociativeSemiRng

BasicType

SemiRing