JetBundleBaseFunctionCategory(JB)
jet.spad line 1249
[edit on github]
JetBundleBaseFunctionCategory defines the category of functions (local sections) of the base space of a jet bundle, i.e. functions depending only on the independent variables. Such a category is needed e.g. for the representation of solutions.
- * : (%, %) -> %
- from Magma
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : (%, List(Symbol)) -> %
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol) -> %
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> %
- from PartialDifferentialRing(Symbol)
- P : List(NonNegativeInteger) -> %
- from JetBundleFunctionCategory(JB)
- P : NonNegativeInteger -> %
- from JetBundleFunctionCategory(JB)
- P : (PositiveInteger, List(NonNegativeInteger)) -> %
- from JetBundleFunctionCategory(JB)
- P : (PositiveInteger, NonNegativeInteger) -> %
- from JetBundleFunctionCategory(JB)
- U : () -> %
- from JetBundleFunctionCategory(JB)
- U : PositiveInteger -> %
- from JetBundleFunctionCategory(JB)
- X : () -> %
- from JetBundleFunctionCategory(JB)
- X : PositiveInteger -> %
- from JetBundleFunctionCategory(JB)
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- autoReduce : List(%) -> List(%)
- from JetBundleFunctionCategory(JB)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- class : % -> NonNegativeInteger
- from JetBundleFunctionCategory(JB)
- coerce : % -> %
- from Algebra(%)
- coerce : JB -> %
- from JetBundleFunctionCategory(JB)
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- const? : % -> Boolean
- from JetBundleFunctionCategory(JB)
- dSubst : (%, JB, %) -> %
- from JetBundleFunctionCategory(JB)
- denominator : % -> %
- from JetBundleFunctionCategory(JB)
- differentiate : (%, JB) -> %
- from JetBundleFunctionCategory(JB)
- differentiate : (%, List(Symbol)) -> %
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol) -> %
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> %
- from PartialDifferentialRing(Symbol)
- dimension : (List(%), SparseEchelonMatrix(JB, %), NonNegativeInteger) -> NonNegativeInteger
- from JetBundleFunctionCategory(JB)
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extractSymbol : SparseEchelonMatrix(JB, %) -> SparseEchelonMatrix(JB, %)
- from JetBundleFunctionCategory(JB)
- formalDiff : (%, List(NonNegativeInteger)) -> %
- from JetBundleFunctionCategory(JB)
- formalDiff : (%, PositiveInteger) -> %
- from JetBundleFunctionCategory(JB)
- formalDiff : (List(%), PositiveInteger) -> List(%)
- from JetBundleFunctionCategory(JB)
- formalDiff2 : (%, PositiveInteger, SparseEchelonMatrix(JB, %)) -> Record(DPhi : %, JVars : List(JB))
- from JetBundleFunctionCategory(JB)
- formalDiff2 : (List(%), PositiveInteger, SparseEchelonMatrix(JB, %)) -> Record(DSys : List(%), JVars : List(List(JB)))
- from JetBundleFunctionCategory(JB)
- freeOf? : (%, JB) -> Boolean
- from JetBundleFunctionCategory(JB)
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from GcdDomain
- getNotation : () -> Symbol
- from JetBundleFunctionCategory(JB)
- jacobiMatrix : List(%) -> SparseEchelonMatrix(JB, %)
- from JetBundleFunctionCategory(JB)
- jacobiMatrix : (List(%), List(List(JB))) -> SparseEchelonMatrix(JB, %)
- from JetBundleFunctionCategory(JB)
- jetVariables : % -> List(JB)
- from JetBundleFunctionCategory(JB)
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leadingDer : % -> JB
- from JetBundleFunctionCategory(JB)
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- numDepVar : () -> PositiveInteger
- from JetBundleFunctionCategory(JB)
- numIndVar : () -> PositiveInteger
- from JetBundleFunctionCategory(JB)
- numerator : % -> %
- from JetBundleFunctionCategory(JB)
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : % -> NonNegativeInteger
- from JetBundleFunctionCategory(JB)
- orderDim : (List(%), SparseEchelonMatrix(JB, %), NonNegativeInteger) -> NonNegativeInteger
- from JetBundleFunctionCategory(JB)
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reduceMod : (List(%), List(%)) -> List(%)
- from JetBundleFunctionCategory(JB)
- retract : % -> JB
- from RetractableTo(JB)
- retractIfCan : % -> Union(JB, "failed")
- from RetractableTo(JB)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- setNotation : Symbol -> Void
- from JetBundleFunctionCategory(JB)
- simpMod : (List(%), List(%)) -> List(%)
- from JetBundleFunctionCategory(JB)
- simpMod : (List(%), SparseEchelonMatrix(JB, %), List(%)) -> Record(Sys : List(%), JM : SparseEchelonMatrix(JB, %), Depend : Union("failed", List(List(NonNegativeInteger))))
- from JetBundleFunctionCategory(JB)
- simpOne : % -> %
- from JetBundleFunctionCategory(JB)
- simplify : (List(%), SparseEchelonMatrix(JB, %)) -> Record(Sys : List(%), JM : SparseEchelonMatrix(JB, %), Depend : Union("failed", List(List(NonNegativeInteger))))
- from JetBundleFunctionCategory(JB)
- solveFor : (%, JB) -> Union(%, "failed")
- from JetBundleFunctionCategory(JB)
- sortLD : List(%) -> List(%)
- from JetBundleFunctionCategory(JB)
- subst : (%, JB, %) -> %
- from JetBundleFunctionCategory(JB)
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- symbol : List(%) -> SparseEchelonMatrix(JB, %)
- from JetBundleFunctionCategory(JB)
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
IntegralDomain
noZeroDivisors
Algebra(%)
RightModule(%)
RetractableTo(JB)
Monoid
GcdDomain
AbelianMonoid
CancellationAbelianMonoid
MagmaWithUnit
TwoSidedRecip
LeftModule(%)
Module(%)
SetCategory
LeftOreRing
PartialDifferentialRing(Symbol)
CommutativeRing
Magma
NonAssociativeRing
SemiGroup
NonAssociativeRng
BiModule(%, %)
CoercibleFrom(JB)
AbelianGroup
AbelianSemiGroup
CommutativeStar
NonAssociativeSemiRing
Rng
NonAssociativeAlgebra(%)
JetBundleFunctionCategory(JB)
unitsKnown
Ring
SemiRng
EntireRing
NonAssociativeSemiRng
BasicType
CoercibleTo(OutputForm)
SemiRing