LaurentPolynomial(R, UP)
gpol.spad line 1
[edit on github]
Univariate polynomials with negative and positive exponents.
- * : (%, %) -> %
- from Magma
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : % -> %
- from DifferentialRing
- D : (%, List(Symbol)) -> %
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(Symbol)
- D : (%, Mapping(UP, UP)) -> %
- from DifferentialExtension(UP)
- D : (%, Mapping(UP, UP), NonNegativeInteger) -> %
- from DifferentialExtension(UP)
- D : (%, NonNegativeInteger) -> %
- from DifferentialRing
- D : (%, Symbol) -> %
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> %
- from PartialDifferentialRing(Symbol)
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, Integer) -> R
coefficient(x, n)
is undocumented
- coerce : % -> %
- from Algebra(%)
- coerce : R -> %
- from CoercibleFrom(R)
- coerce : UP -> %
- from CoercibleFrom(UP)
- coerce : Fraction(Integer) -> % if R has RetractableTo(Fraction(Integer))
- from CoercibleFrom(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- convert : % -> Fraction(UP)
- from ConvertibleTo(Fraction(UP))
- degree : % -> Integer
degree(x)
is undocumented
- differentiate : % -> %
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> %
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Mapping(UP, UP)) -> %
- from DifferentialExtension(UP)
- differentiate : (%, Mapping(UP, UP), NonNegativeInteger) -> %
- from DifferentialExtension(UP)
- differentiate : (%, NonNegativeInteger) -> %
- from DifferentialRing
- differentiate : (%, Symbol) -> %
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> %
- from PartialDifferentialRing(Symbol)
- divide : (%, %) -> Record(quotient : %, remainder : %) if R has Field
- from EuclideanDomain
- euclideanSize : % -> NonNegativeInteger if R has Field
- from EuclideanDomain
- expressIdealMember : (List(%), %) -> Union(List(%), "failed") if R has Field
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if R has Field
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed") if R has Field
- from EuclideanDomain
- gcd : (%, %) -> % if R has Field
- from GcdDomain
- gcd : List(%) -> % if R has Field
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has Field
- from GcdDomain
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> % if R has Field
- from GcdDomain
- lcm : List(%) -> % if R has Field
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has Field
- from LeftOreRing
- leadingCoefficient : % -> R
leadingCoefficient
is undocumented
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- monomial : (R, Integer) -> %
monomial(x, n)
is undocumented
- monomial? : % -> Boolean
monomial?(x)
is undocumented
- multiEuclidean : (List(%), %) -> Union(List(%), "failed") if R has Field
- from EuclideanDomain
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : % -> Integer
order(x)
is undocumented
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- principalIdeal : List(%) -> Record(coef : List(%), generator : %) if R has Field
- from PrincipalIdealDomain
- quo : (%, %) -> % if R has Field
- from EuclideanDomain
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reductum : % -> %
reductum(x)
is undocumented
- rem : (%, %) -> % if R has Field
- from EuclideanDomain
- retract : % -> R
- from RetractableTo(R)
- retract : % -> UP
- from RetractableTo(UP)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(UP, "failed")
- from RetractableTo(UP)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- separate : Fraction(UP) -> Record(polyPart : %, fracPart : Fraction(UP)) if R has Field
separate(x)
is undocumented
- sizeLess? : (%, %) -> Boolean if R has Field
- from EuclideanDomain
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- trailingCoefficient : % -> R
trailingCoefficient
is undocumented
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CharacteristicNonZero
CoercibleFrom(R)
SetCategory
PrincipalIdealDomain
noZeroDivisors
RightModule(%)
DifferentialExtension(UP)
Monoid
AbelianMonoid
Algebra(%)
EuclideanDomain
CoercibleFrom(Fraction(Integer))
CancellationAbelianMonoid
GcdDomain
MagmaWithUnit
NonAssociativeRing
RetractableTo(Fraction(Integer))
RetractableTo(Integer)
CommutativeStar
RetractableTo(R)
LeftModule(%)
ConvertibleTo(Fraction(UP))
RetractableTo(UP)
Module(%)
LeftOreRing
BiModule(%, %)
CoercibleTo(OutputForm)
Rng
CommutativeRing
IntegralDomain
TwoSidedRecip
Magma
NonAssociativeRng
PartialDifferentialRing(Symbol)
CoercibleFrom(Integer)
unitsKnown
AbelianGroup
AbelianSemiGroup
SemiGroup
NonAssociativeSemiRing
CoercibleFrom(UP)
NonAssociativeAlgebra(%)
DifferentialRing
Ring
SemiRng
EntireRing
NonAssociativeSemiRng
CharacteristicZero
BasicType
SemiRing
FullyRetractableTo(R)