LaurentPolynomial(R, UP)

gpol.spad line 1 [edit on github]

Univariate polynomials with negative and positive exponents.

* : (%, %) -> %
from Magma
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
D : % -> %
from DifferentialRing
D : (%, List(Symbol)) -> %
from PartialDifferentialRing(Symbol)
D : (%, List(Symbol), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(Symbol)
D : (%, Mapping(UP, UP)) -> %
from DifferentialExtension(UP)
D : (%, Mapping(UP, UP), NonNegativeInteger) -> %
from DifferentialExtension(UP)
D : (%, NonNegativeInteger) -> %
from DifferentialRing
D : (%, Symbol) -> %
from PartialDifferentialRing(Symbol)
D : (%, Symbol, NonNegativeInteger) -> %
from PartialDifferentialRing(Symbol)
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
from CharacteristicNonZero
coefficient : (%, Integer) -> R

coefficient(x, n) is undocumented

coerce : % -> %
from Algebra(%)
coerce : R -> %
from CoercibleFrom(R)
coerce : UP -> %
from CoercibleFrom(UP)
coerce : Fraction(Integer) -> % if R has RetractableTo(Fraction(Integer))
from CoercibleFrom(Fraction(Integer))
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
convert : % -> Fraction(UP)
from ConvertibleTo(Fraction(UP))
degree : % -> Integer

degree(x) is undocumented

differentiate : % -> %
from DifferentialRing
differentiate : (%, List(Symbol)) -> %
from PartialDifferentialRing(Symbol)
differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(Symbol)
differentiate : (%, Mapping(UP, UP)) -> %
from DifferentialExtension(UP)
differentiate : (%, Mapping(UP, UP), NonNegativeInteger) -> %
from DifferentialExtension(UP)
differentiate : (%, NonNegativeInteger) -> %
from DifferentialRing
differentiate : (%, Symbol) -> %
from PartialDifferentialRing(Symbol)
differentiate : (%, Symbol, NonNegativeInteger) -> %
from PartialDifferentialRing(Symbol)
divide : (%, %) -> Record(quotient : %, remainder : %) if R has Field
from EuclideanDomain
euclideanSize : % -> NonNegativeInteger if R has Field
from EuclideanDomain
expressIdealMember : (List(%), %) -> Union(List(%), "failed") if R has Field
from PrincipalIdealDomain
exquo : (%, %) -> Union(%, "failed")
from EntireRing
extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if R has Field
from EuclideanDomain
extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed") if R has Field
from EuclideanDomain
gcd : (%, %) -> % if R has Field
from GcdDomain
gcd : List(%) -> % if R has Field
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has Field
from GcdDomain
latex : % -> String
from SetCategory
lcm : (%, %) -> % if R has Field
from GcdDomain
lcm : List(%) -> % if R has Field
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has Field
from LeftOreRing
leadingCoefficient : % -> R

leadingCoefficient is undocumented

leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
monomial : (R, Integer) -> %

monomial(x, n) is undocumented

monomial? : % -> Boolean

monomial?(x) is undocumented

multiEuclidean : (List(%), %) -> Union(List(%), "failed") if R has Field
from EuclideanDomain
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
order : % -> Integer

order(x) is undocumented

plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
principalIdeal : List(%) -> Record(coef : List(%), generator : %) if R has Field
from PrincipalIdealDomain
quo : (%, %) -> % if R has Field
from EuclideanDomain
recip : % -> Union(%, "failed")
from MagmaWithUnit
reductum : % -> %

reductum(x) is undocumented

rem : (%, %) -> % if R has Field
from EuclideanDomain
retract : % -> R
from RetractableTo(R)
retract : % -> UP
from RetractableTo(UP)
retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retract : % -> Integer if R has RetractableTo(Integer)
from RetractableTo(Integer)
retractIfCan : % -> Union(R, "failed")
from RetractableTo(R)
retractIfCan : % -> Union(UP, "failed")
from RetractableTo(UP)
retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
from RetractableTo(Integer)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
separate : Fraction(UP) -> Record(polyPart : %, fracPart : Fraction(UP)) if R has Field

separate(x) is undocumented

sizeLess? : (%, %) -> Boolean if R has Field
from EuclideanDomain
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
trailingCoefficient : % -> R

trailingCoefficient is undocumented

unit? : % -> Boolean
from EntireRing
unitCanonical : % -> %
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %)
from EntireRing
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

CharacteristicNonZero

CoercibleFrom(R)

SetCategory

PrincipalIdealDomain

noZeroDivisors

RightModule(%)

DifferentialExtension(UP)

Monoid

AbelianMonoid

Algebra(%)

EuclideanDomain

CoercibleFrom(Fraction(Integer))

CancellationAbelianMonoid

GcdDomain

MagmaWithUnit

NonAssociativeRing

RetractableTo(Fraction(Integer))

RetractableTo(Integer)

CommutativeStar

RetractableTo(R)

LeftModule(%)

ConvertibleTo(Fraction(UP))

RetractableTo(UP)

Module(%)

LeftOreRing

BiModule(%, %)

CoercibleTo(OutputForm)

Rng

CommutativeRing

IntegralDomain

TwoSidedRecip

Magma

NonAssociativeRng

PartialDifferentialRing(Symbol)

CoercibleFrom(Integer)

unitsKnown

AbelianGroup

AbelianSemiGroup

SemiGroup

NonAssociativeSemiRing

CoercibleFrom(UP)

NonAssociativeAlgebra(%)

DifferentialRing

Ring

SemiRng

EntireRing

NonAssociativeSemiRng

CharacteristicZero

BasicType

SemiRing

FullyRetractableTo(R)