MultivariateTaylorSeriesCategory(Coef, Var)
pscat.spad line 459
[edit on github]
MultivariateTaylorSeriesCategory is the most general multivariate Taylor series category.
- * : (%, %) -> %
- from Magma
- * : (%, Coef) -> %
- from RightModule(Coef)
- * : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (Coef, %) -> %
- from LeftModule(Coef)
- * : (Fraction(Integer), %) -> % if Coef has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, Coef) -> % if Coef has Field
- from AbelianMonoidRing(Coef, IndexedExponents(Var))
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : (%, Var) -> %
- from PartialDifferentialRing(Var)
- D : (%, Var, NonNegativeInteger) -> %
- from PartialDifferentialRing(Var)
- D : (%, List(Var)) -> %
- from PartialDifferentialRing(Var)
- D : (%, List(Var), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(Var)
- ^ : (%, %) -> % if Coef has Algebra(Fraction(Integer))
- from ElementaryFunctionCategory
- ^ : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
- from RadicalCategory
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- acos : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- acosh : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- acot : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- acoth : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- acsc : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- acsch : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- asec : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- asech : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- asin : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- asinh : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- associates? : (%, %) -> Boolean if Coef has IntegralDomain
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- atan : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- atanh : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if Coef has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, Var, NonNegativeInteger) -> %
coefficient(f, x, n)
returns the coefficient of x^n
in f
.
- coefficient : (%, List(Var), List(NonNegativeInteger)) -> %
coefficient(f, [x1, x2, ..., xk], [n1, n2, ..., nk])
returns the coefficient of x1^n1 * ... * xk^nk
in f
.
- coefficient : (%, IndexedExponents(Var)) -> Coef
- from AbelianMonoidRing(Coef, IndexedExponents(Var))
- coerce : % -> % if Coef has CommutativeRing
- from Algebra(%)
- coerce : Coef -> % if Coef has CommutativeRing
- from Algebra(Coef)
- coerce : Fraction(Integer) -> % if Coef has Algebra(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- complete : % -> %
- from PowerSeriesCategory(Coef, IndexedExponents(Var), Var)
- construct : List(Record(k : IndexedExponents(Var), c : Coef)) -> %
- from IndexedProductCategory(Coef, IndexedExponents(Var))
- constructOrdered : List(Record(k : IndexedExponents(Var), c : Coef)) -> %
- from IndexedProductCategory(Coef, IndexedExponents(Var))
- cos : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- cosh : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- cot : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- coth : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- csc : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- csch : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- degree : % -> IndexedExponents(Var)
- from PowerSeriesCategory(Coef, IndexedExponents(Var), Var)
- differentiate : (%, Var) -> %
- from PartialDifferentialRing(Var)
- differentiate : (%, Var, NonNegativeInteger) -> %
- from PartialDifferentialRing(Var)
- differentiate : (%, List(Var)) -> %
- from PartialDifferentialRing(Var)
- differentiate : (%, List(Var), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(Var)
- eval : (%, %, %) -> %
- from InnerEvalable(%, %)
- eval : (%, Var, %) -> %
- from InnerEvalable(Var, %)
- eval : (%, Equation(%)) -> %
- from Evalable(%)
- eval : (%, List(%), List(%)) -> %
- from InnerEvalable(%, %)
- eval : (%, List(Var), List(%)) -> %
- from InnerEvalable(Var, %)
- eval : (%, List(Equation(%))) -> %
- from Evalable(%)
- exp : % -> % if Coef has Algebra(Fraction(Integer))
- from ElementaryFunctionCategory
- exquo : (%, %) -> Union(%, "failed") if Coef has IntegralDomain
- from EntireRing
- extend : (%, NonNegativeInteger) -> %
extend(f, n)
causes all terms of f
of degree <= n
to be computed.
- integrate : (%, Var) -> % if Coef has Algebra(Fraction(Integer))
integrate(f, x)
returns the anti-derivative of the power series f(x)
with respect to the variable x
with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> Coef
- from PowerSeriesCategory(Coef, IndexedExponents(Var), Var)
- leadingMonomial : % -> %
- from PowerSeriesCategory(Coef, IndexedExponents(Var), Var)
- leadingSupport : % -> IndexedExponents(Var)
- from IndexedProductCategory(Coef, IndexedExponents(Var))
- leadingTerm : % -> Record(k : IndexedExponents(Var), c : Coef)
- from IndexedProductCategory(Coef, IndexedExponents(Var))
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- log : % -> % if Coef has Algebra(Fraction(Integer))
- from ElementaryFunctionCategory
- map : (Mapping(Coef, Coef), %) -> %
- from IndexedProductCategory(Coef, IndexedExponents(Var))
- monomial : (%, Var, NonNegativeInteger) -> %
monomial(a, x, n)
returns a*x^n
.
- monomial : (%, List(Var), List(NonNegativeInteger)) -> %
monomial(a, [x1, x2, ..., xk], [n1, n2, ..., nk])
returns a * x1^n1 * ... * xk^nk
.
- monomial : (Coef, IndexedExponents(Var)) -> %
- from IndexedProductCategory(Coef, IndexedExponents(Var))
- monomial? : % -> Boolean
- from IndexedProductCategory(Coef, IndexedExponents(Var))
- nthRoot : (%, Integer) -> % if Coef has Algebra(Fraction(Integer))
- from RadicalCategory
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : (%, Var) -> NonNegativeInteger
order(f, x)
returns the order of f
viewed as a series in x
may result in an infinite loop if f
has no non-zero terms.
- order : (%, Var, NonNegativeInteger) -> NonNegativeInteger
order(f, x, n)
returns min(n, order(f, x))
.
- pi : () -> % if Coef has Algebra(Fraction(Integer))
- from TranscendentalFunctionCategory
- plenaryPower : (%, PositiveInteger) -> % if Coef has Algebra(Fraction(Integer)) or Coef has CommutativeRing
- from NonAssociativeAlgebra(Coef)
- pole? : % -> Boolean
- from PowerSeriesCategory(Coef, IndexedExponents(Var), Var)
- polynomial : (%, NonNegativeInteger) -> Polynomial(Coef)
polynomial(f, k)
returns a polynomial consisting of the sum of all terms of f
of degree <= k
.
- polynomial : (%, NonNegativeInteger, NonNegativeInteger) -> Polynomial(Coef)
polynomial(f, k1, k2)
returns a polynomial consisting of the sum of all terms of f
of degree d
with k1 <= d <= k2
.
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reductum : % -> %
- from IndexedProductCategory(Coef, IndexedExponents(Var))
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- sec : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- sech : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- sin : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- sinh : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- sqrt : % -> % if Coef has Algebra(Fraction(Integer))
- from RadicalCategory
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- tan : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- tanh : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- unit? : % -> Boolean if Coef has IntegralDomain
- from EntireRing
- unitCanonical : % -> % if Coef has IntegralDomain
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if Coef has IntegralDomain
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Module(Fraction(Integer))
NonAssociativeAlgebra(Coef)
Module(Coef)
NonAssociativeSemiRing
BiModule(%, %)
Rng
HyperbolicFunctionCategory
ArcTrigonometricFunctionCategory
InnerEvalable(Var, %)
TwoSidedRecip
TranscendentalFunctionCategory
SemiRing
EntireRing
RightModule(Coef)
NonAssociativeAlgebra(Fraction(Integer))
unitsKnown
RadicalCategory
CharacteristicNonZero
AbelianProductCategory(Coef)
noZeroDivisors
Magma
InnerEvalable(%, %)
SemiGroup
IntegralDomain
LeftModule(%)
AbelianMonoidRing(Coef, IndexedExponents(Var))
ArcHyperbolicFunctionCategory
CharacteristicZero
Algebra(%)
RightModule(Fraction(Integer))
CommutativeRing
NonAssociativeSemiRng
CancellationAbelianMonoid
CommutativeStar
VariablesCommuteWithCoefficients
AbelianMonoid
MagmaWithUnit
NonAssociativeRing
RightModule(%)
BiModule(Coef, Coef)
PartialDifferentialRing(Var)
LeftModule(Coef)
Module(%)
CoercibleTo(OutputForm)
TrigonometricFunctionCategory
Algebra(Coef)
SemiRng
Monoid
NonAssociativeAlgebra(%)
Algebra(Fraction(Integer))
BasicType
Ring
LeftModule(Fraction(Integer))
AbelianSemiGroup
SetCategory
PowerSeriesCategory(Coef, IndexedExponents(Var), Var)
IndexedProductCategory(Coef, IndexedExponents(Var))
NonAssociativeRng
Evalable(%)
BiModule(Fraction(Integer), Fraction(Integer))
AbelianGroup
ElementaryFunctionCategory