QuaternionCategory(R)
quat.spad line 1
[edit on github]
QuaternionCategory describes the category of quaternions and implements functions that are not representation specific.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Field
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
- from RightModule(Integer)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Field
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- < : (%, %) -> Boolean if R has OrderedSet
- from PartialOrder
- <= : (%, %) -> Boolean if R has OrderedSet
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean if R has OrderedSet
- from PartialOrder
- >= : (%, %) -> Boolean if R has OrderedSet
- from PartialOrder
- D : % -> % if R has DifferentialRing
- from DifferentialRing
- D : (%, List(Symbol)) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, Mapping(R, R)) -> %
- from DifferentialExtension(R)
- D : (%, Mapping(R, R), NonNegativeInteger) -> %
- from DifferentialExtension(R)
- D : (%, NonNegativeInteger) -> % if R has DifferentialRing
- from DifferentialRing
- D : (%, Symbol) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- ^ : (%, Integer) -> % if R has Field
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- abs : % -> R if R has RealNumberSystem
abs(q)
computes the absolute value of quaternion q
(sqrt of norm).
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if R has EntireRing
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
- from CharacteristicNonZero
- coerce : R -> %
- from Algebra(R)
- coerce : Fraction(Integer) -> % if R has RetractableTo(Fraction(Integer)) or R has Field
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- conjugate : % -> %
conjugate(q)
negates the imaginary parts of quaternion q
.
- convert : % -> InputForm if R has ConvertibleTo(InputForm)
- from ConvertibleTo(InputForm)
- differentiate : % -> % if R has DifferentialRing
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Mapping(R, R)) -> %
- from DifferentialExtension(R)
- differentiate : (%, Mapping(R, R), NonNegativeInteger) -> %
- from DifferentialExtension(R)
- differentiate : (%, NonNegativeInteger) -> % if R has DifferentialRing
- from DifferentialRing
- differentiate : (%, Symbol) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- elt : (%, R) -> % if R has Eltable(R, R)
- from Eltable(R, %)
- eval : (%, R, R) -> % if R has Evalable(R)
- from InnerEvalable(R, R)
- eval : (%, Equation(R)) -> % if R has Evalable(R)
- from Evalable(R)
- eval : (%, List(R), List(R)) -> % if R has Evalable(R)
- from InnerEvalable(R, R)
- eval : (%, List(Equation(R))) -> % if R has Evalable(R)
- from Evalable(R)
- eval : (%, List(Symbol), List(R)) -> % if R has InnerEvalable(Symbol, R)
- from InnerEvalable(Symbol, R)
- eval : (%, Symbol, R) -> % if R has InnerEvalable(Symbol, R)
- from InnerEvalable(Symbol, R)
- exquo : (%, %) -> Union(%, "failed") if R has EntireRing
- from EntireRing
- imagI : % -> R
imagI(q)
extracts the imaginary i
part of quaternion q
.
- imagJ : % -> R
imagJ(q)
extracts the imaginary j
part of quaternion q
.
- imagK : % -> R
imagK(q)
extracts the imaginary k
part of quaternion q
.
- inv : % -> % if R has Field
- from DivisionRing
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- map : (Mapping(R, R), %) -> %
- from FullyEvalableOver(R)
- max : (%, %) -> % if R has OrderedSet
- from OrderedSet
- min : (%, %) -> % if R has OrderedSet
- from OrderedSet
- norm : % -> R
norm(q)
computes the norm of q
(the sum of the squares of the components).
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(R)
- quatern : (R, R, R, R) -> %
quatern(r, i, j, k)
constructs a quaternion from scalars.
- rational : % -> Fraction(Integer) if R has IntegerNumberSystem
rational(q)
tries to convert q
into a rational number. Error: if this is not possible. If rational?(q)
is true
, the conversion will be done and the rational number returned.
- rational? : % -> Boolean if R has IntegerNumberSystem
rational?(q)
returns true
if all the imaginary parts of q
are zero and the real part can be converted into a rational number, and false
otherwise.
- rationalIfCan : % -> Union(Fraction(Integer), "failed") if R has IntegerNumberSystem
rationalIfCan(q)
returns q
as a rational number, or "failed" if this is not possible. Note: if rational?(q)
is true
, the conversion can be done and the rational number will be returned.
- real : % -> R
real(q)
extracts the real part of quaternion q
.
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reducedSystem : Matrix(%) -> Matrix(R)
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- retract : % -> R
- from RetractableTo(R)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if R has OrderedSet
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit? : % -> Boolean if R has EntireRing
- from EntireRing
- unitCanonical : % -> % if R has EntireRing
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CharacteristicNonZero
Comparable
ConvertibleTo(InputForm)
noZeroDivisors
CoercibleFrom(R)
NonAssociativeSemiRng
BasicType
Monoid
AbelianMonoid
BiModule(R, R)
LeftModule(Fraction(Integer))
DivisionRing
DifferentialExtension(R)
NonAssociativeAlgebra(R)
Algebra(R)
CancellationAbelianMonoid
OrderedSet
MagmaWithUnit
NonAssociativeRing
RightModule(R)
RightModule(Fraction(Integer))
RetractableTo(Integer)
LinearlyExplicitOver(Integer)
RetractableTo(R)
LinearlyExplicitOver(R)
LeftModule(%)
LeftModule(R)
FullyLinearlyExplicitOver(R)
RightModule(%)
Algebra(Fraction(Integer))
SetCategory
CoercibleTo(OutputForm)
NonAssociativeAlgebra(Fraction(Integer))
Rng
Module(Fraction(Integer))
TwoSidedRecip
Magma
SemiGroup
InnerEvalable(R, R)
PartialOrder
PartialDifferentialRing(Symbol)
BiModule(%, %)
CoercibleFrom(Integer)
unitsKnown
AbelianGroup
AbelianSemiGroup
RetractableTo(Fraction(Integer))
NonAssociativeSemiRing
FullyEvalableOver(R)
InnerEvalable(Symbol, R)
Module(R)
Eltable(R, %)
DifferentialRing
Evalable(R)
RightModule(Integer)
NonAssociativeRng
Ring
BiModule(Fraction(Integer), Fraction(Integer))
SemiRng
CoercibleFrom(Fraction(Integer))
EntireRing
FullyRetractableTo(R)
CharacteristicZero
SemiRing