ExtensionField(F)

ffcat.spad line 34 [edit on github]

ExtensionField F is the category of fields which extend the field F

* : (%, %) -> %
from Magma
* : (%, F) -> %
from RightModule(F)
* : (%, Fraction(Integer)) -> %
from RightModule(Fraction(Integer))
* : (F, %) -> %
from LeftModule(F)
* : (Fraction(Integer), %) -> %
from LeftModule(Fraction(Integer))
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, %) -> %
from Field
/ : (%, F) -> %

x/y divides x by the scalar y.

0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
Frobenius : % -> % if F has Finite

Frobenius(a) returns a ^ q where q is the size()$F.

Frobenius : (%, NonNegativeInteger) -> % if F has Finite

Frobenius(a, s) returns a^(q^s) where q is the size()$F.

^ : (%, Integer) -> %
from DivisionRing
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
algebraic? : % -> Boolean

algebraic?(a) tests whether an element a is algebraic with respect to the ground field F.

annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
charthRoot : % -> Union(%, "failed") if F has Finite or F has CharacteristicNonZero
from CharacteristicNonZero
coerce : % -> %
from Algebra(%)
coerce : F -> %
from CoercibleFrom(F)
coerce : Fraction(Integer) -> %
from Algebra(Fraction(Integer))
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
degree : % -> OnePointCompletion(PositiveInteger)

degree(a) returns the degree of minimal polynomial of an element a if a is algebraic with respect to the ground field F, and infinity otherwise.

discreteLog : (%, %) -> Union(NonNegativeInteger, "failed") if F has Finite or F has CharacteristicNonZero
from FieldOfPrimeCharacteristic
divide : (%, %) -> Record(quotient : %, remainder : %)
from EuclideanDomain
euclideanSize : % -> NonNegativeInteger
from EuclideanDomain
expressIdealMember : (List(%), %) -> Union(List(%), "failed")
from PrincipalIdealDomain
exquo : (%, %) -> Union(%, "failed")
from EntireRing
extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
from EuclideanDomain
extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
from EuclideanDomain
extensionDegree : () -> OnePointCompletion(PositiveInteger)

extensionDegree() returns the degree of the field extension if the extension is algebraic, and infinity if it is not.

factor : % -> Factored(%)
from UniqueFactorizationDomain
gcd : (%, %) -> %
from GcdDomain
gcd : List(%) -> %
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
from GcdDomain
inGroundField? : % -> Boolean

inGroundField?(a) tests whether an element a is already in the ground field F.

inv : % -> %
from DivisionRing
latex : % -> String
from SetCategory
lcm : (%, %) -> %
from GcdDomain
lcm : List(%) -> %
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
from LeftOreRing
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
multiEuclidean : (List(%), %) -> Union(List(%), "failed")
from EuclideanDomain
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
order : % -> OnePointCompletion(PositiveInteger) if F has Finite or F has CharacteristicNonZero
from FieldOfPrimeCharacteristic
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
prime? : % -> Boolean
from UniqueFactorizationDomain
primeFrobenius : % -> % if F has Finite or F has CharacteristicNonZero
from FieldOfPrimeCharacteristic
primeFrobenius : (%, NonNegativeInteger) -> % if F has Finite or F has CharacteristicNonZero
from FieldOfPrimeCharacteristic
principalIdeal : List(%) -> Record(coef : List(%), generator : %)
from PrincipalIdealDomain
quo : (%, %) -> %
from EuclideanDomain
recip : % -> Union(%, "failed")
from MagmaWithUnit
rem : (%, %) -> %
from EuclideanDomain
retract : % -> F
from RetractableTo(F)
retractIfCan : % -> Union(F, "failed")
from RetractableTo(F)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
sizeLess? : (%, %) -> Boolean
from EuclideanDomain
squareFree : % -> Factored(%)
from UniqueFactorizationDomain
squareFreePart : % -> %
from UniqueFactorizationDomain
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
transcendenceDegree : () -> NonNegativeInteger

transcendenceDegree() returns the transcendence degree of the field extension, 0 if the extension is algebraic.

transcendent? : % -> Boolean

transcendent?(a) tests whether an element a is transcendent with respect to the ground field F.

unit? : % -> Boolean
from EntireRing
unitCanonical : % -> %
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %)
from EntireRing
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

IntegralDomain

Module(Fraction(Integer))

noZeroDivisors

LeftModule(Fraction(Integer))

RightModule(F)

Algebra(%)

RightModule(%)

Monoid

GcdDomain

AbelianMonoid

UniqueFactorizationDomain

EuclideanDomain

EntireRing

NonAssociativeSemiRng

NonAssociativeAlgebra(Fraction(Integer))

RetractableTo(F)

CancellationAbelianMonoid

MagmaWithUnit

RightModule(Fraction(Integer))

unitsKnown

LeftModule(F)

LeftModule(%)

canonicalUnitNormal

Module(%)

Module(F)

SetCategory

LeftOreRing

CoercibleTo(OutputForm)

Algebra(Fraction(Integer))

Rng

Field

CommutativeRing

TwoSidedRecip

Magma

NonAssociativeRing

SemiGroup

CoercibleFrom(F)

BiModule(F, F)

DivisionRing

BiModule(%, %)

AbelianGroup

AbelianSemiGroup

CommutativeStar

NonAssociativeSemiRing

canonicalsClosed

NonAssociativeAlgebra(%)

Ring

PrincipalIdealDomain

FieldOfPrimeCharacteristic

BiModule(Fraction(Integer), Fraction(Integer))

CharacteristicNonZero

NonAssociativeRng

SemiRng

CharacteristicZero

BasicType

SemiRing