ExtensionField(F)
ffcat.spad line 34
[edit on github]
ExtensionField F is the category of fields which extend the field F
- * : (%, %) -> %
- from Magma
- * : (%, F) -> %
- from RightModule(F)
- * : (%, Fraction(Integer)) -> %
- from RightModule(Fraction(Integer))
- * : (F, %) -> %
- from LeftModule(F)
- * : (Fraction(Integer), %) -> %
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> %
- from Field
- / : (%, F) -> %
x/y
divides x
by the scalar y
.
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- Frobenius : % -> % if F has Finite
Frobenius(a)
returns a ^ q
where q
is the size()$F
.
- Frobenius : (%, NonNegativeInteger) -> % if F has Finite
Frobenius(a, s)
returns a^(q^s)
where q
is the size()$F
.
- ^ : (%, Integer) -> %
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- algebraic? : % -> Boolean
algebraic?(a)
tests whether an element a
is algebraic with respect to the ground field F
.
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if F has Finite or F has CharacteristicNonZero
- from CharacteristicNonZero
- coerce : % -> %
- from Algebra(%)
- coerce : F -> %
- from CoercibleFrom(F)
- coerce : Fraction(Integer) -> %
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- degree : % -> OnePointCompletion(PositiveInteger)
degree(a)
returns the degree of minimal polynomial of an element a
if a
is algebraic with respect to the ground field F
, and infinity
otherwise.
- discreteLog : (%, %) -> Union(NonNegativeInteger, "failed") if F has Finite or F has CharacteristicNonZero
- from FieldOfPrimeCharacteristic
- divide : (%, %) -> Record(quotient : %, remainder : %)
- from EuclideanDomain
- euclideanSize : % -> NonNegativeInteger
- from EuclideanDomain
- expressIdealMember : (List(%), %) -> Union(List(%), "failed")
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
- from EuclideanDomain
- extensionDegree : () -> OnePointCompletion(PositiveInteger)
extensionDegree()
returns the degree of the field extension if the extension is algebraic, and infinity
if it is not.
- factor : % -> Factored(%)
- from UniqueFactorizationDomain
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from GcdDomain
- inGroundField? : % -> Boolean
inGroundField?(a)
tests whether an element a
is already in the ground field F
.
- inv : % -> %
- from DivisionRing
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- multiEuclidean : (List(%), %) -> Union(List(%), "failed")
- from EuclideanDomain
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : % -> OnePointCompletion(PositiveInteger) if F has Finite or F has CharacteristicNonZero
- from FieldOfPrimeCharacteristic
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- prime? : % -> Boolean
- from UniqueFactorizationDomain
- primeFrobenius : % -> % if F has Finite or F has CharacteristicNonZero
- from FieldOfPrimeCharacteristic
- primeFrobenius : (%, NonNegativeInteger) -> % if F has Finite or F has CharacteristicNonZero
- from FieldOfPrimeCharacteristic
- principalIdeal : List(%) -> Record(coef : List(%), generator : %)
- from PrincipalIdealDomain
- quo : (%, %) -> %
- from EuclideanDomain
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rem : (%, %) -> %
- from EuclideanDomain
- retract : % -> F
- from RetractableTo(F)
- retractIfCan : % -> Union(F, "failed")
- from RetractableTo(F)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- sizeLess? : (%, %) -> Boolean
- from EuclideanDomain
- squareFree : % -> Factored(%)
- from UniqueFactorizationDomain
- squareFreePart : % -> %
- from UniqueFactorizationDomain
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- transcendenceDegree : () -> NonNegativeInteger
transcendenceDegree()
returns the transcendence degree of the field extension, 0 if the extension is algebraic.
- transcendent? : % -> Boolean
transcendent?(a)
tests whether an element a
is transcendent with respect to the ground field F
.
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
IntegralDomain
Module(Fraction(Integer))
noZeroDivisors
LeftModule(Fraction(Integer))
RightModule(F)
Algebra(%)
RightModule(%)
Monoid
GcdDomain
AbelianMonoid
UniqueFactorizationDomain
EuclideanDomain
EntireRing
NonAssociativeSemiRng
NonAssociativeAlgebra(Fraction(Integer))
RetractableTo(F)
CancellationAbelianMonoid
MagmaWithUnit
RightModule(Fraction(Integer))
unitsKnown
LeftModule(F)
LeftModule(%)
canonicalUnitNormal
Module(%)
Module(F)
SetCategory
LeftOreRing
CoercibleTo(OutputForm)
Algebra(Fraction(Integer))
Rng
Field
CommutativeRing
TwoSidedRecip
Magma
NonAssociativeRing
SemiGroup
CoercibleFrom(F)
BiModule(F, F)
DivisionRing
BiModule(%, %)
AbelianGroup
AbelianSemiGroup
CommutativeStar
NonAssociativeSemiRing
canonicalsClosed
NonAssociativeAlgebra(%)
Ring
PrincipalIdealDomain
FieldOfPrimeCharacteristic
BiModule(Fraction(Integer), Fraction(Integer))
CharacteristicNonZero
NonAssociativeRng
SemiRng
CharacteristicZero
BasicType
SemiRing