JetBundleLinearFunction(JB, D)

jet.spad line 2888 [edit on github]

JetBundleLinearFunction implements linear functions over a jet bundle. The coefficients are functions of the independent variables only.

* : (%, %) -> %
from Magma
* : (%, D) -> %
from RightModule(D)
* : (D, %) -> %
from LeftModule(D)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
D : (%, List(Symbol)) -> %
from PartialDifferentialRing(Symbol)
D : (%, List(Symbol), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(Symbol)
D : (%, Symbol) -> %
from PartialDifferentialRing(Symbol)
D : (%, Symbol, NonNegativeInteger) -> %
from PartialDifferentialRing(Symbol)
P : List(NonNegativeInteger) -> %
from JetBundleFunctionCategory(JB)
P : NonNegativeInteger -> %
from JetBundleFunctionCategory(JB)
P : (PositiveInteger, List(NonNegativeInteger)) -> %
from JetBundleFunctionCategory(JB)
P : (PositiveInteger, NonNegativeInteger) -> %
from JetBundleFunctionCategory(JB)
U : () -> %
from JetBundleFunctionCategory(JB)
U : PositiveInteger -> %
from JetBundleFunctionCategory(JB)
X : () -> %
from JetBundleFunctionCategory(JB)
X : PositiveInteger -> %
from JetBundleFunctionCategory(JB)
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
autoReduce : List(%) -> List(%)
from JetBundleFunctionCategory(JB)
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
class : % -> NonNegativeInteger
from JetBundleFunctionCategory(JB)
coerce : % -> %
from Algebra(%)
coerce : D -> %

coerce : JB -> %
from JetBundleFunctionCategory(JB)
coerce : Integer -> %
from NonAssociativeRing
coerce : SparseEchelonMatrix(JB, D) -> List(%)

coercion to matrices over ground domain.

coerce : % -> OutputForm
from CoercibleTo(OutputForm)
coerce : List(%) -> SparseEchelonMatrix(JB, D)

commutator : (%, %) -> %
from NonAssociativeRng
const? : % -> Boolean
from JetBundleFunctionCategory(JB)
dSubst : (%, JB, %) -> %
from JetBundleFunctionCategory(JB)
denominator : % -> %
from JetBundleFunctionCategory(JB)
differentiate : (%, JB) -> %
from JetBundleFunctionCategory(JB)
differentiate : (%, List(Symbol)) -> %
from PartialDifferentialRing(Symbol)
differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(Symbol)
differentiate : (%, Symbol) -> %
from PartialDifferentialRing(Symbol)
differentiate : (%, Symbol, NonNegativeInteger) -> %
from PartialDifferentialRing(Symbol)
dimension : (List(%), SparseEchelonMatrix(JB, %), NonNegativeInteger) -> NonNegativeInteger
from JetBundleFunctionCategory(JB)
exquo : (%, %) -> Union(%, "failed")
from EntireRing
extractSymbol : SparseEchelonMatrix(JB, %) -> SparseEchelonMatrix(JB, %)
from JetBundleFunctionCategory(JB)
formalDiff : (%, List(NonNegativeInteger)) -> %
from JetBundleFunctionCategory(JB)
formalDiff : (%, PositiveInteger) -> %
from JetBundleFunctionCategory(JB)
formalDiff : (List(%), PositiveInteger) -> List(%)
from JetBundleFunctionCategory(JB)
formalDiff2 : (%, PositiveInteger, SparseEchelonMatrix(JB, %)) -> Record(DPhi : %, JVars : List(JB))
from JetBundleFunctionCategory(JB)
formalDiff2 : (List(%), PositiveInteger, SparseEchelonMatrix(JB, %)) -> Record(DSys : List(%), JVars : List(List(JB)))
from JetBundleFunctionCategory(JB)
freeOf? : (%, JB) -> Boolean
from JetBundleFunctionCategory(JB)
gcd : (%, %) -> %
from GcdDomain
gcd : List(%) -> %
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
from GcdDomain
getNotation : () -> Symbol
from JetBundleFunctionCategory(JB)
ground : % -> %

ground(l) returns the ground part of l.

ground? : % -> Boolean

ground?(l) yields true, if l is an element of the ground domain D.

jacobiMatrix : List(%) -> SparseEchelonMatrix(JB, %)
from JetBundleFunctionCategory(JB)
jacobiMatrix : (List(%), List(List(JB))) -> SparseEchelonMatrix(JB, %)
from JetBundleFunctionCategory(JB)
jetVariables : % -> List(JB)
from JetBundleFunctionCategory(JB)
latex : % -> String
from SetCategory
lcm : (%, %) -> %
from GcdDomain
lcm : List(%) -> %
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
from LeftOreRing
leadingDer : % -> JB
from JetBundleFunctionCategory(JB)
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
numDepVar : () -> PositiveInteger
from JetBundleFunctionCategory(JB)
numIndVar : () -> PositiveInteger
from JetBundleFunctionCategory(JB)
numerator : % -> %
from JetBundleFunctionCategory(JB)
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
order : % -> NonNegativeInteger
from JetBundleFunctionCategory(JB)
orderDim : (List(%), SparseEchelonMatrix(JB, %), NonNegativeInteger) -> NonNegativeInteger
from JetBundleFunctionCategory(JB)
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
recip : % -> Union(%, "failed")
from MagmaWithUnit
reduceMod : (List(%), List(%)) -> List(%)
from JetBundleFunctionCategory(JB)
retract : JetBundleExpression(JB) -> % if D has retractIfCan : JetBundleExpression(JB) -> Union(D, "failed")

retract(p) is like retractIfCan(p) put yields a hard error, if p contains further jet variables.

retract : % -> D
from RetractableTo(D)
retract : % -> JB
from RetractableTo(JB)
retractIfCan : JetBundleExpression(JB) -> Union(%, "failed") if D has retractIfCan : JetBundleExpression(JB) -> Union(D, "failed")

retractIfCan(p) tries to write a general expression as a linear function.

retractIfCan : % -> Union(D, "failed")
from RetractableTo(D)
retractIfCan : % -> Union(JB, "failed")
from RetractableTo(JB)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
setNotation : Symbol -> Void
from JetBundleFunctionCategory(JB)
simpMod : (List(%), List(%)) -> List(%)
from JetBundleFunctionCategory(JB)
simpMod : (List(%), SparseEchelonMatrix(JB, %), List(%)) -> Record(Sys : List(%), JM : SparseEchelonMatrix(JB, %), Depend : Union("failed", List(List(NonNegativeInteger))))
from JetBundleFunctionCategory(JB)
simpOne : % -> %
from JetBundleFunctionCategory(JB)
simplify : (List(%), SparseEchelonMatrix(JB, %)) -> Record(Sys : List(%), JM : SparseEchelonMatrix(JB, %), Depend : Union("failed", List(List(NonNegativeInteger))))
from JetBundleFunctionCategory(JB)
solveFor : (%, JB) -> Union(%, "failed")
from JetBundleFunctionCategory(JB)
sortLD : List(%) -> List(%)
from JetBundleFunctionCategory(JB)
subst : (%, JB, %) -> %
from JetBundleFunctionCategory(JB)
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
symbol : List(%) -> SparseEchelonMatrix(JB, %)
from JetBundleFunctionCategory(JB)
unit? : % -> Boolean
from EntireRing
unitCanonical : % -> %
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %)
from EntireRing
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

IntegralDomain

noZeroDivisors

SetCategory

RetractableTo(D)

RightModule(%)

RetractableTo(JB)

GcdDomain

RightModule(D)

AbelianMonoid

Monoid

Algebra(%)

CancellationAbelianMonoid

MagmaWithUnit

Module(%)

Module(D)

BasicType

BiModule(D, D)

LeftModule(%)

JetBundleFunctionCategory(JB)

LeftOreRing

CoercibleFrom(D)

PartialDifferentialRing(Symbol)

LeftModule(D)

CommutativeRing

Magma

NonAssociativeRing

SemiGroup

NonAssociativeRng

BiModule(%, %)

CoercibleFrom(JB)

AbelianGroup

AbelianSemiGroup

CommutativeStar

NonAssociativeSemiRing

Rng

NonAssociativeAlgebra(%)

unitsKnown

Ring

SemiRng

EntireRing

NonAssociativeSemiRng

lazyRepresentation

CoercibleTo(OutputForm)

SemiRing

TwoSidedRecip