OrdinaryDifferentialRing(Kernels, R, var)
lodo.spad line 284
[edit on github]
This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.
- * : (%, %) -> %
- from LeftModule(%)
- * : (%, Fraction(Integer)) -> % if R has Field
- from RightModule(Fraction(Integer))
- * : (Fraction(Integer), %) -> % if R has Field
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> % if R has Field
- from Field
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : % -> %
- from DifferentialRing
- D : (%, NonNegativeInteger) -> %
- from DifferentialRing
- ^ : (%, Integer) -> % if R has Field
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if R has Field
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : % -> % if R has Field
- from Algebra(%)
- coerce : R -> %
coerce(r)
views r
as a value in the ordinary differential ring.
- coerce : Fraction(Integer) -> % if R has Field
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> R
coerce(p)
views p
as a valie in the partial differential ring.
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- differentiate : % -> %
- from DifferentialRing
- differentiate : (%, NonNegativeInteger) -> %
- from DifferentialRing
- divide : (%, %) -> Record(quotient : %, remainder : %) if R has Field
- from EuclideanDomain
- euclideanSize : % -> NonNegativeInteger if R has Field
- from EuclideanDomain
- expressIdealMember : (List(%), %) -> Union(List(%), "failed") if R has Field
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed") if R has Field
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if R has Field
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed") if R has Field
- from EuclideanDomain
- factor : % -> Factored(%) if R has Field
- from UniqueFactorizationDomain
- gcd : (%, %) -> % if R has Field
- from GcdDomain
- gcd : List(%) -> % if R has Field
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has Field
- from GcdDomain
- inv : % -> % if R has Field
- from DivisionRing
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> % if R has Field
- from GcdDomain
- lcm : List(%) -> % if R has Field
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has Field
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- multiEuclidean : (List(%), %) -> Union(List(%), "failed") if R has Field
- from EuclideanDomain
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if R has Field
- from NonAssociativeAlgebra(%)
- prime? : % -> Boolean if R has Field
- from UniqueFactorizationDomain
- principalIdeal : List(%) -> Record(coef : List(%), generator : %) if R has Field
- from PrincipalIdealDomain
- quo : (%, %) -> % if R has Field
- from EuclideanDomain
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rem : (%, %) -> % if R has Field
- from EuclideanDomain
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- sizeLess? : (%, %) -> Boolean if R has Field
- from EuclideanDomain
- squareFree : % -> Factored(%) if R has Field
- from UniqueFactorizationDomain
- squareFreePart : % -> % if R has Field
- from UniqueFactorizationDomain
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit? : % -> Boolean if R has Field
- from EntireRing
- unitCanonical : % -> % if R has Field
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has Field
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
IntegralDomain
Module(Fraction(Integer))
noZeroDivisors
LeftModule(Fraction(Integer))
Algebra(%)
RightModule(%)
Monoid
GcdDomain
AbelianMonoid
EuclideanDomain
EntireRing
NonAssociativeSemiRng
NonAssociativeAlgebra(Fraction(Integer))
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
RightModule(Fraction(Integer))
unitsKnown
LeftModule(%)
canonicalUnitNormal
Module(%)
SetCategory
LeftOreRing
CoercibleTo(OutputForm)
Algebra(Fraction(Integer))
Rng
Field
CommutativeRing
TwoSidedRecip
Magma
UniqueFactorizationDomain
SemiGroup
DivisionRing
BiModule(%, %)
AbelianGroup
AbelianSemiGroup
CommutativeStar
NonAssociativeSemiRing
canonicalsClosed
NonAssociativeAlgebra(%)
PrincipalIdealDomain
BiModule(Fraction(Integer), Fraction(Integer))
DifferentialRing
NonAssociativeRng
Ring
SemiRng
BasicType
SemiRing