PiDomain
expr.spad line 1079
[edit on github]
Symbolic fractions in %pi
with integer coefficients; The point for using PiDomain as the default domain for those fractions is that PiDomain is coercible to the float types, and not Expression. Date Created: 21 Feb 1990
- * : (%, %) -> %
- from Magma
- * : (%, Fraction(Integer)) -> %
- from RightModule(Fraction(Integer))
- * : (Fraction(Integer), %) -> %
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> %
- from Field
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, Integer) -> %
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : % -> %
- from Algebra(%)
- coerce : Fraction(Integer) -> %
- from CoercibleFrom(Fraction(Integer))
- coerce : Integer -> %
- from CoercibleFrom(Integer)
- coerce : % -> DoubleFloat
- from CoercibleTo(DoubleFloat)
- coerce : % -> Float
- from CoercibleTo(Float)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- convert : % -> DoubleFloat
- from ConvertibleTo(DoubleFloat)
- convert : % -> Float
- from ConvertibleTo(Float)
- convert : % -> Fraction(SparseUnivariatePolynomial(Integer))
- from ConvertibleTo(Fraction(SparseUnivariatePolynomial(Integer)))
- convert : % -> InputForm
- from ConvertibleTo(InputForm)
- divide : (%, %) -> Record(quotient : %, remainder : %)
- from EuclideanDomain
- euclideanSize : % -> NonNegativeInteger
- from EuclideanDomain
- expressIdealMember : (List(%), %) -> Union(List(%), "failed")
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
- from EuclideanDomain
- factor : % -> Factored(%)
- from UniqueFactorizationDomain
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from GcdDomain
- inv : % -> %
- from DivisionRing
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- multiEuclidean : (List(%), %) -> Union(List(%), "failed")
- from EuclideanDomain
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- pi : () -> %
pi
()
returns the symbolic %pi
.
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- prime? : % -> Boolean
- from UniqueFactorizationDomain
- principalIdeal : List(%) -> Record(coef : List(%), generator : %)
- from PrincipalIdealDomain
- quo : (%, %) -> %
- from EuclideanDomain
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rem : (%, %) -> %
- from EuclideanDomain
- retract : % -> Fraction(Integer)
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer
- from RetractableTo(Integer)
- retractIfCan : % -> Union(Fraction(Integer), "failed")
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed")
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- sizeLess? : (%, %) -> Boolean
- from EuclideanDomain
- squareFree : % -> Factored(%)
- from UniqueFactorizationDomain
- squareFreePart : % -> %
- from UniqueFactorizationDomain
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
IntegralDomain
Module(Fraction(Integer))
ConvertibleTo(InputForm)
LeftModule(Fraction(Integer))
canonicalsClosed
Algebra(%)
RightModule(%)
ConvertibleTo(Fraction(SparseUnivariatePolynomial(Integer)))
GcdDomain
Monoid
AbelianMonoid
EuclideanDomain
EntireRing
ConvertibleTo(Float)
NonAssociativeAlgebra(Fraction(Integer))
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
RightModule(Fraction(Integer))
RetractableTo(Integer)
CoercibleTo(OutputForm)
RealConstant
unitsKnown
NonAssociativeSemiRng
LeftModule(%)
canonicalUnitNormal
CommutativeStar
Module(%)
SetCategory
LeftOreRing
Algebra(Fraction(Integer))
Rng
Field
CommutativeRing
SemiRing
TwoSidedRecip
Magma
UniqueFactorizationDomain
CoercibleFrom(Fraction(Integer))
NonAssociativeRng
DivisionRing
CoercibleTo(DoubleFloat)
BiModule(%, %)
CoercibleFrom(Integer)
AbelianGroup
AbelianSemiGroup
RetractableTo(Fraction(Integer))
SemiGroup
noZeroDivisors
NonAssociativeSemiRing
NonAssociativeAlgebra(%)
PrincipalIdealDomain
ConvertibleTo(DoubleFloat)
BiModule(Fraction(Integer), Fraction(Integer))
Ring
SemiRng
CharacteristicZero
BasicType
CoercibleTo(Float)