SparseUnivariateTaylorSeries(Coef, var, cen)
sups.spad line 1072
[edit on github]
Sparse Taylor series in one variable SparseUnivariateTaylorSeries is a domain representing Taylor series in one variable with coefficients in an arbitrary ring.The parameters of the type specify the coefficient ring, the power series variable, and the center of the power series expansion.For example, SparseUnivariateTaylorSeries(Integer, x
, 3) represents Taylor series in (x - 3)
with Integer coefficients.
- * : (%, %) -> %
- from Magma
- * : (%, Coef) -> %
- from RightModule(Coef)
- * : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (Coef, %) -> %
- from LeftModule(Coef)
- * : (Fraction(Integer), %) -> % if Coef has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, Coef) -> % if Coef has Field
- from AbelianMonoidRing(Coef, NonNegativeInteger)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : % -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef
- from DifferentialRing
- D : (%, List(Symbol)) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, NonNegativeInteger) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef
- from DifferentialRing
- D : (%, Symbol) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- ^ : (%, %) -> % if Coef has Algebra(Fraction(Integer))
- from ElementaryFunctionCategory
- ^ : (%, Coef) -> % if Coef has Field
- from UnivariateTaylorSeriesCategory(Coef)
- ^ : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
- from RadicalCategory
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- acos : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- acosh : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- acot : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- acoth : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- acsc : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- acsch : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- approximate : (%, NonNegativeInteger) -> Coef if Coef has coerce : Symbol -> Coef and Coef has ^ : (Coef, NonNegativeInteger) -> Coef
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- asec : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- asech : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- asin : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- asinh : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- associates? : (%, %) -> Boolean if Coef has IntegralDomain
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- atan : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- atanh : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- center : % -> Coef
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if Coef has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, NonNegativeInteger) -> Coef
- from AbelianMonoidRing(Coef, NonNegativeInteger)
- coefficients : % -> Stream(Coef)
- from UnivariateTaylorSeriesCategory(Coef)
- coerce : % -> % if Coef has CommutativeRing
- from Algebra(%)
- coerce : Coef -> % if Coef has CommutativeRing
- from Algebra(Coef)
- coerce : Fraction(Integer) -> % if Coef has Algebra(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : UnivariatePolynomial(var, Coef) -> %
coerce(p)
converts a univariate polynomial p
in the variable var
to a univariate Taylor series in var
.
- coerce : Variable(var) -> %
coerce(var)
converts the series variable var
into a Taylor series.
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- complete : % -> %
- from PowerSeriesCategory(Coef, NonNegativeInteger, SingletonAsOrderedSet)
- construct : List(Record(k : NonNegativeInteger, c : Coef)) -> %
- from IndexedProductCategory(Coef, NonNegativeInteger)
- constructOrdered : List(Record(k : NonNegativeInteger, c : Coef)) -> %
- from IndexedProductCategory(Coef, NonNegativeInteger)
- cos : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- cosh : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- cot : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- coth : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- csc : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- csch : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- degree : % -> NonNegativeInteger
- from PowerSeriesCategory(Coef, NonNegativeInteger, SingletonAsOrderedSet)
- differentiate : % -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, NonNegativeInteger) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef
- from DifferentialRing
- differentiate : (%, Symbol) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Variable(var)) -> %
differentiate(f(x), x)
computes the derivative of f(x)
with respect to x
.
- elt : (%, %) -> %
- from Eltable(%, %)
- elt : (%, NonNegativeInteger) -> Coef
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- eval : (%, Coef) -> Stream(Coef) if Coef has ^ : (Coef, NonNegativeInteger) -> Coef
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- exp : % -> % if Coef has Algebra(Fraction(Integer))
- from ElementaryFunctionCategory
- exquo : (%, %) -> Union(%, "failed") if Coef has IntegralDomain
- from EntireRing
- extend : (%, NonNegativeInteger) -> %
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- integrate : % -> % if Coef has Algebra(Fraction(Integer))
- from UnivariateSeriesWithRationalExponents(Coef, NonNegativeInteger)
- integrate : (%, Symbol) -> % if Coef has Algebra(Fraction(Integer)) and Coef has integrate : (Coef, Symbol) -> Coef and Coef has variables : Coef -> List(Symbol)
- from UnivariateSeriesWithRationalExponents(Coef, NonNegativeInteger)
- integrate : (%, Variable(var)) -> % if Coef has Algebra(Fraction(Integer))
integrate(f(x), x)
returns an anti-derivative of the power series f(x)
with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> Coef
- from PowerSeriesCategory(Coef, NonNegativeInteger, SingletonAsOrderedSet)
- leadingMonomial : % -> %
- from PowerSeriesCategory(Coef, NonNegativeInteger, SingletonAsOrderedSet)
- leadingSupport : % -> NonNegativeInteger
- from IndexedProductCategory(Coef, NonNegativeInteger)
- leadingTerm : % -> Record(k : NonNegativeInteger, c : Coef)
- from IndexedProductCategory(Coef, NonNegativeInteger)
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- log : % -> % if Coef has Algebra(Fraction(Integer))
- from ElementaryFunctionCategory
- map : (Mapping(Coef, Coef), %) -> %
- from IndexedProductCategory(Coef, NonNegativeInteger)
- monomial : (Coef, NonNegativeInteger) -> %
- from IndexedProductCategory(Coef, NonNegativeInteger)
- monomial? : % -> Boolean
- from IndexedProductCategory(Coef, NonNegativeInteger)
- multiplyCoefficients : (Mapping(Coef, Integer), %) -> %
- from UnivariateTaylorSeriesCategory(Coef)
- multiplyExponents : (%, PositiveInteger) -> %
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- nthRoot : (%, Integer) -> % if Coef has Algebra(Fraction(Integer))
- from RadicalCategory
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : % -> NonNegativeInteger
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- order : (%, NonNegativeInteger) -> NonNegativeInteger
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- pi : () -> % if Coef has Algebra(Fraction(Integer))
- from TranscendentalFunctionCategory
- plenaryPower : (%, PositiveInteger) -> % if Coef has CommutativeRing or Coef has Algebra(Fraction(Integer))
- from NonAssociativeAlgebra(Coef)
- pole? : % -> Boolean
- from PowerSeriesCategory(Coef, NonNegativeInteger, SingletonAsOrderedSet)
- polynomial : (%, NonNegativeInteger) -> Polynomial(Coef)
- from UnivariateTaylorSeriesCategory(Coef)
- polynomial : (%, NonNegativeInteger, NonNegativeInteger) -> Polynomial(Coef)
- from UnivariateTaylorSeriesCategory(Coef)
- quoByVar : % -> %
- from UnivariateTaylorSeriesCategory(Coef)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reductum : % -> %
- from IndexedProductCategory(Coef, NonNegativeInteger)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- sec : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- sech : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- series : Stream(Coef) -> %
- from UnivariateTaylorSeriesCategory(Coef)
- series : Stream(Record(k : NonNegativeInteger, c : Coef)) -> %
- from UnivariateTaylorSeriesCategory(Coef)
- sin : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- sinh : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- sqrt : % -> % if Coef has Algebra(Fraction(Integer))
- from RadicalCategory
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- tan : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- tanh : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- terms : % -> Stream(Record(k : NonNegativeInteger, c : Coef))
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- truncate : (%, NonNegativeInteger) -> %
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- truncate : (%, NonNegativeInteger, NonNegativeInteger) -> %
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- unit? : % -> Boolean if Coef has IntegralDomain
- from EntireRing
- unitCanonical : % -> % if Coef has IntegralDomain
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if Coef has IntegralDomain
- from EntireRing
- univariatePolynomial : (%, NonNegativeInteger) -> UnivariatePolynomial(var, Coef)
univariatePolynomial(f, k)
returns a univariate polynomial consisting of the sum of all terms of f
of degree <= k
.
- variable : % -> Symbol
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Module(Fraction(Integer))
NonAssociativeAlgebra(Coef)
Module(Coef)
NonAssociativeSemiRing
BiModule(%, %)
Rng
ArcTrigonometricFunctionCategory
TwoSidedRecip
TranscendentalFunctionCategory
SemiRing
EntireRing
RightModule(Coef)
NonAssociativeAlgebra(Fraction(Integer))
unitsKnown
RadicalCategory
AbelianMonoidRing(Coef, NonNegativeInteger)
CharacteristicNonZero
MagmaWithUnit
AbelianProductCategory(Coef)
Magma
SemiGroup
RightModule(Fraction(Integer))
IntegralDomain
LeftModule(%)
NonAssociativeRing
ArcHyperbolicFunctionCategory
PartialDifferentialRing(Symbol)
CharacteristicZero
UnivariateTaylorSeriesCategory(Coef)
Algebra(%)
PowerSeriesCategory(Coef, NonNegativeInteger, SingletonAsOrderedSet)
CommutativeRing
DifferentialRing
Eltable(%, %)
NonAssociativeSemiRng
CancellationAbelianMonoid
IndexedProductCategory(Coef, NonNegativeInteger)
AbelianMonoid
VariablesCommuteWithCoefficients
CommutativeStar
UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
RightModule(%)
BiModule(Coef, Coef)
LeftModule(Coef)
Module(%)
CoercibleTo(OutputForm)
Algebra(Coef)
SemiRng
Monoid
NonAssociativeAlgebra(%)
Algebra(Fraction(Integer))
UnivariateSeriesWithRationalExponents(Coef, NonNegativeInteger)
BasicType
Ring
LeftModule(Fraction(Integer))
AbelianSemiGroup
noZeroDivisors
SetCategory
TrigonometricFunctionCategory
NonAssociativeRng
BiModule(Fraction(Integer), Fraction(Integer))
HyperbolicFunctionCategory
AbelianGroup
ElementaryFunctionCategory