PolynomialRing(R, E)
poly.spad line 317
[edit on github]
This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring), and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used, for example, by the DistributedMultivariatePolynomial domain where the exponent domain is a direct product of non negative integers.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> % if % has AbelianGroup or R has AbelianGroup
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> % if % has AbelianGroup or R has AbelianGroup
- from AbelianGroup
- - : (%, %) -> % if % has AbelianGroup or R has AbelianGroup
- from AbelianGroup
- / : (%, R) -> % if R has Field
- from AbelianMonoidRing(R, E)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> % if R has SemiRing
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean if R has Ring
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if R has EntireRing
- from EntireRing
- associator : (%, %, %) -> % if R has Ring
- from NonAssociativeRng
- binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- from FiniteAbelianMonoidRing(R, E)
- characteristic : () -> NonNegativeInteger if R has Ring
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, E) -> R
- from AbelianMonoidRing(R, E)
- coefficients : % -> List(R)
- from FreeModuleCategory(R, E)
- coerce : % -> % if R has CommutativeRing
- from Algebra(%)
- coerce : R -> %
- from Algebra(R)
- coerce : Fraction(Integer) -> % if R has Algebra(Fraction(Integer)) or R has RetractableTo(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> % if R has RetractableTo(Integer) or R has Ring
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> % if R has Ring
- from NonAssociativeRng
- construct : List(Record(k : E, c : R)) -> %
- from IndexedProductCategory(R, E)
- constructOrdered : List(Record(k : E, c : R)) -> %
- from IndexedProductCategory(R, E)
- content : % -> R if R has GcdDomain
- from FiniteAbelianMonoidRing(R, E)
- degree : % -> E
- from AbelianMonoidRing(R, E)
- exquo : (%, %) -> Union(%, "failed") if R has EntireRing
- from EntireRing
- exquo : (%, R) -> Union(%, "failed") if R has EntireRing
- from FiniteAbelianMonoidRing(R, E)
- fmecg : (%, E, R, %) -> % if R has Ring
- from FiniteAbelianMonoidRing(R, E)
- ground : % -> R
- from FiniteAbelianMonoidRing(R, E)
- ground? : % -> Boolean
- from FiniteAbelianMonoidRing(R, E)
- hash : % -> SingleInteger if E has Hashable and R has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if E has Hashable and R has Hashable
- from Hashable
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> R
- from IndexedProductCategory(R, E)
- leadingMonomial : % -> %
- from IndexedProductCategory(R, E)
- leadingSupport : % -> E
- from IndexedProductCategory(R, E)
- leadingTerm : % -> Record(k : E, c : R)
- from IndexedProductCategory(R, E)
- leftPower : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- linearExtend : (Mapping(R, E), %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, E)
- listOfTerms : % -> List(Record(k : E, c : R))
- from IndexedDirectProductCategory(R, E)
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, E)
- mapExponents : (Mapping(E, E), %) -> %
- from FiniteAbelianMonoidRing(R, E)
- minimumDegree : % -> E
- from FiniteAbelianMonoidRing(R, E)
- monomial : (R, E) -> %
- from IndexedProductCategory(R, E)
- monomial? : % -> Boolean
- from IndexedProductCategory(R, E)
- monomials : % -> List(%)
- from FreeModuleCategory(R, E)
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, E)
- one? : % -> Boolean if R has SemiRing
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing or R has Algebra(Fraction(Integer))
- from NonAssociativeAlgebra(%)
- pomopo! : (%, R, E, %) -> %
- from FiniteAbelianMonoidRing(R, E)
- primitivePart : % -> % if R has GcdDomain
- from FiniteAbelianMonoidRing(R, E)
- recip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- reductum : % -> %
- from IndexedProductCategory(R, E)
- retract : % -> R
- from RetractableTo(R)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- support : % -> List(E)
- from FreeModuleCategory(R, E)
- unit? : % -> Boolean if R has EntireRing
- from EntireRing
- unitCanonical : % -> % if R has EntireRing
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CharacteristicNonZero
Module(Fraction(Integer))
Comparable
LeftModule(Fraction(Integer))
CoercibleFrom(R)
Algebra(%)
noZeroDivisors
RightModule(%)
Algebra(R)
Monoid
IndexedProductCategory(R, E)
AbelianMonoid
BiModule(R, R)
FiniteAbelianMonoidRing(R, E)
NonAssociativeAlgebra(Fraction(Integer))
CancellationAbelianMonoid
FreeModuleCategory(R, E)
MagmaWithUnit
RightModule(R)
RightModule(Fraction(Integer))
RetractableTo(Integer)
AbelianSemiGroup
NonAssociativeSemiRng
NonAssociativeAlgebra(%)
LeftModule(%)
LeftModule(R)
canonicalUnitNormal
Module(%)
SetCategory
CoercibleTo(OutputForm)
Algebra(Fraction(Integer))
Rng
CommutativeRing
IntegralDomain
TwoSidedRecip
Magma
NonAssociativeAlgebra(R)
CoercibleFrom(Fraction(Integer))
SemiGroup
CoercibleFrom(Integer)
AbelianGroup
RetractableTo(Fraction(Integer))
CommutativeStar
NonAssociativeSemiRing
VariablesCommuteWithCoefficients
IndexedDirectProductCategory(R, E)
AbelianProductCategory(R)
Module(R)
BiModule(Fraction(Integer), Fraction(Integer))
CharacteristicZero
RetractableTo(R)
NonAssociativeRng
unitsKnown
Ring
AbelianMonoidRing(R, E)
NonAssociativeRing
SemiRng
EntireRing
Hashable
BasicType
BiModule(%, %)
SemiRing
FullyRetractableTo(R)