MultivariateSkewPolynomialCategory(R, E, Var)

skpol.spad line 1 [edit on github]

undocumented

* : (%, %) -> %
from Magma
* : (%, R) -> %
from RightModule(R)
* : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
from RightModule(Fraction(Integer))
* : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
from RightModule(Integer)
* : (R, %) -> %
from LeftModule(R)
* : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
from LeftModule(Fraction(Integer))
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, R) -> % if R has Field
from AbelianMonoidRing(R, E)
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean if R has EntireRing
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
from FiniteAbelianMonoidRing(R, E)
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
from CharacteristicNonZero
coefficient : (%, Var, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, E, Var)
coefficient : (%, List(Var), List(NonNegativeInteger)) -> %
from MaybeSkewPolynomialCategory(R, E, Var)
coefficient : (%, E) -> R
from AbelianMonoidRing(R, E)
coefficients : % -> List(R)
from FreeModuleCategory(R, E)
coerce : % -> % if R has IntegralDomain and % has VariablesCommuteWithCoefficients or R has CommutativeRing and % has VariablesCommuteWithCoefficients
from Algebra(%)
coerce : R -> %
from Algebra(R)
coerce : Fraction(Integer) -> % if R has RetractableTo(Fraction(Integer)) or R has Algebra(Fraction(Integer))
from Algebra(Fraction(Integer))
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
construct : List(Record(k : E, c : R)) -> %
from IndexedProductCategory(R, E)
constructOrdered : List(Record(k : E, c : R)) -> %
from IndexedProductCategory(R, E)
content : % -> R if R has GcdDomain
from FiniteAbelianMonoidRing(R, E)
degree : % -> E
from AbelianMonoidRing(R, E)
degree : (%, List(Var)) -> List(NonNegativeInteger)
from MaybeSkewPolynomialCategory(R, E, Var)
degree : (%, Var) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, Var)
exquo : (%, %) -> Union(%, "failed") if R has EntireRing
from EntireRing
exquo : (%, R) -> Union(%, "failed") if R has EntireRing
from FiniteAbelianMonoidRing(R, E)
fmecg : (%, E, R, %) -> %
from FiniteAbelianMonoidRing(R, E)
ground : % -> R
from FiniteAbelianMonoidRing(R, E)
ground? : % -> Boolean
from FiniteAbelianMonoidRing(R, E)
latex : % -> String
from SetCategory
leadingCoefficient : % -> R
from IndexedProductCategory(R, E)
leadingMonomial : % -> %
from IndexedProductCategory(R, E)
leadingSupport : % -> E
from IndexedProductCategory(R, E)
leadingTerm : % -> Record(k : E, c : R)
from IndexedProductCategory(R, E)
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
linearExtend : (Mapping(R, E), %) -> R if R has CommutativeRing
from FreeModuleCategory(R, E)
listOfTerms : % -> List(Record(k : E, c : R))
from IndexedDirectProductCategory(R, E)
mainVariable : % -> Union(Var, "failed")
from MaybeSkewPolynomialCategory(R, E, Var)
map : (Mapping(R, R), %) -> %
from IndexedProductCategory(R, E)
mapExponents : (Mapping(E, E), %) -> %
from FiniteAbelianMonoidRing(R, E)
minimumDegree : % -> E
from FiniteAbelianMonoidRing(R, E)
monomial : (%, Var, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, E, Var)
monomial : (%, List(Var), List(NonNegativeInteger)) -> %
from MaybeSkewPolynomialCategory(R, E, Var)
monomial : (R, E) -> %
from IndexedProductCategory(R, E)
monomial? : % -> Boolean
from IndexedProductCategory(R, E)
monomials : % -> List(%)
from MaybeSkewPolynomialCategory(R, E, Var)
numberOfMonomials : % -> NonNegativeInteger
from IndexedDirectProductCategory(R, E)
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing and % has VariablesCommuteWithCoefficients or R has Algebra(Fraction(Integer)) or R has IntegralDomain and % has VariablesCommuteWithCoefficients
from NonAssociativeAlgebra(%)
pomopo! : (%, R, E, %) -> %
from FiniteAbelianMonoidRing(R, E)
primitiveMonomials : % -> List(%)
from MaybeSkewPolynomialCategory(R, E, Var)
primitivePart : % -> % if R has GcdDomain
from FiniteAbelianMonoidRing(R, E)
recip : % -> Union(%, "failed")
from MagmaWithUnit
reducedSystem : Matrix(%) -> Matrix(R)
from LinearlyExplicitOver(R)
reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
from LinearlyExplicitOver(Integer)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
from LinearlyExplicitOver(R)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
from LinearlyExplicitOver(Integer)
reductum : % -> %
from IndexedProductCategory(R, E)
retract : % -> R
from RetractableTo(R)
retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retract : % -> Integer if R has RetractableTo(Integer)
from RetractableTo(Integer)
retractIfCan : % -> Union(R, "failed")
from RetractableTo(R)
retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
from RetractableTo(Integer)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
smaller? : (%, %) -> Boolean if R has Comparable
from Comparable
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
support : % -> List(E)
from FreeModuleCategory(R, E)
totalDegree : % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, Var)
totalDegree : (%, List(Var)) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, Var)
totalDegreeSorted : (%, List(Var)) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, Var)
unit? : % -> Boolean if R has EntireRing
from EntireRing
unitCanonical : % -> % if R has EntireRing
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
from EntireRing
variables : % -> List(Var)
from MaybeSkewPolynomialCategory(R, E, Var)
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

CharacteristicNonZero

Module(Fraction(Integer))

Comparable

LeftModule(Fraction(Integer))

CoercibleFrom(R)

Algebra(%)

noZeroDivisors

RightModule(%)

Algebra(R)

Monoid

AbelianMonoid

BiModule(R, R)

FiniteAbelianMonoidRing(R, E)

NonAssociativeAlgebra(Fraction(Integer))

RightModule(Integer)

CancellationAbelianMonoid

MagmaWithUnit

RetractableTo(Fraction(Integer))

RightModule(R)

RightModule(Fraction(Integer))

IndexedProductCategory(R, E)

RetractableTo(Integer)

LinearlyExplicitOver(Integer)

LinearlyExplicitOver(R)

TwoSidedRecip

LeftModule(%)

LeftModule(R)

canonicalUnitNormal

Module(%)

SetCategory

IndexedDirectProductCategory(R, E)

CoercibleTo(OutputForm)

Algebra(Fraction(Integer))

Rng

FreeModuleCategory(R, E)

CommutativeRing

IntegralDomain

Magma

NonAssociativeAlgebra(R)

CoercibleFrom(Fraction(Integer))

SemiGroup

CoercibleFrom(Integer)

unitsKnown

AbelianGroup

AbelianSemiGroup

FullyLinearlyExplicitOver(R)

CommutativeStar

NonAssociativeSemiRing

NonAssociativeAlgebra(%)

AbelianProductCategory(R)

Module(R)

MaybeSkewPolynomialCategory(R, E, Var)

NonAssociativeRing

BiModule(Fraction(Integer), Fraction(Integer))

CharacteristicZero

RetractableTo(R)

NonAssociativeRng

Ring

AbelianMonoidRing(R, E)

SemiRng

EntireRing

NonAssociativeSemiRng

BasicType

BiModule(%, %)

SemiRing

FullyRetractableTo(R)