SymmetricPolynomial(R)
prtition.spad line 125
[edit on github]
This domain implements symmetric polynomial
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, R) -> % if R has Field
- from AbelianMonoidRing(R, Partition)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if R has EntireRing
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- from FiniteAbelianMonoidRing(R, Partition)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, Partition) -> R
- from FreeModuleCategory(R, Partition)
- coefficients : % -> List(R)
- from FreeModuleCategory(R, Partition)
- coerce : % -> % if R has CommutativeRing
- from Algebra(%)
- coerce : R -> %
- from Algebra(R)
- coerce : Fraction(Integer) -> % if R has Algebra(Fraction(Integer)) or R has RetractableTo(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- construct : List(Record(k : Partition, c : R)) -> %
- from IndexedProductCategory(R, Partition)
- constructOrdered : List(Record(k : Partition, c : R)) -> %
- from IndexedProductCategory(R, Partition)
- content : % -> R if R has GcdDomain
- from FiniteAbelianMonoidRing(R, Partition)
- degree : % -> Partition
- from AbelianMonoidRing(R, Partition)
- exquo : (%, %) -> Union(%, "failed") if R has EntireRing
- from EntireRing
- exquo : (%, R) -> Union(%, "failed") if R has EntireRing
- from FiniteAbelianMonoidRing(R, Partition)
- fmecg : (%, Partition, R, %) -> %
- from FiniteAbelianMonoidRing(R, Partition)
- ground : % -> R
- from FiniteAbelianMonoidRing(R, Partition)
- ground? : % -> Boolean
- from FiniteAbelianMonoidRing(R, Partition)
- hash : % -> SingleInteger if Partition has Hashable and R has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if Partition has Hashable and R has Hashable
- from Hashable
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> R
- from IndexedProductCategory(R, Partition)
- leadingMonomial : % -> %
- from IndexedProductCategory(R, Partition)
- leadingSupport : % -> Partition
- from IndexedProductCategory(R, Partition)
- leadingTerm : % -> Record(k : Partition, c : R)
- from IndexedProductCategory(R, Partition)
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- linearExtend : (Mapping(R, Partition), %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, Partition)
- listOfTerms : % -> List(Record(k : Partition, c : R))
- from IndexedDirectProductCategory(R, Partition)
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, Partition)
- mapExponents : (Mapping(Partition, Partition), %) -> %
- from FiniteAbelianMonoidRing(R, Partition)
- minimumDegree : % -> Partition
- from FiniteAbelianMonoidRing(R, Partition)
- monomial : (R, Partition) -> %
- from IndexedProductCategory(R, Partition)
- monomial? : % -> Boolean
- from IndexedProductCategory(R, Partition)
- monomials : % -> List(%)
- from FreeModuleCategory(R, Partition)
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, Partition)
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing or R has Algebra(Fraction(Integer))
- from NonAssociativeAlgebra(%)
- pomopo! : (%, R, Partition, %) -> %
- from FiniteAbelianMonoidRing(R, Partition)
- primitivePart : % -> % if R has GcdDomain
- from FiniteAbelianMonoidRing(R, Partition)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reductum : % -> %
- from IndexedProductCategory(R, Partition)
- retract : % -> R
- from RetractableTo(R)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- support : % -> List(Partition)
- from FreeModuleCategory(R, Partition)
- unit? : % -> Boolean if R has EntireRing
- from EntireRing
- unitCanonical : % -> % if R has EntireRing
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CharacteristicNonZero
Module(Fraction(Integer))
Comparable
LeftModule(Fraction(Integer))
CoercibleFrom(R)
noZeroDivisors
RightModule(%)
IndexedProductCategory(R, Partition)
Algebra(R)
Monoid
AbelianMonoid
Algebra(%)
BiModule(R, R)
NonAssociativeAlgebra(Fraction(Integer))
CancellationAbelianMonoid
AbelianMonoidRing(R, Partition)
MagmaWithUnit
FiniteAbelianMonoidRing(R, Partition)
RightModule(R)
RightModule(Fraction(Integer))
RetractableTo(Integer)
AbelianSemiGroup
NonAssociativeSemiRng
LeftModule(%)
LeftModule(R)
canonicalUnitNormal
Module(%)
SetCategory
CoercibleTo(OutputForm)
Algebra(Fraction(Integer))
Rng
CommutativeRing
IntegralDomain
TwoSidedRecip
Magma
NonAssociativeAlgebra(R)
CoercibleFrom(Fraction(Integer))
FreeModuleCategory(R, Partition)
SemiGroup
CoercibleFrom(Integer)
AbelianGroup
RetractableTo(Fraction(Integer))
CommutativeStar
NonAssociativeSemiRing
AbelianProductCategory(R)
VariablesCommuteWithCoefficients
NonAssociativeAlgebra(%)
Module(R)
BiModule(Fraction(Integer), Fraction(Integer))
IndexedDirectProductCategory(R, Partition)
CharacteristicZero
RetractableTo(R)
NonAssociativeRng
unitsKnown
Ring
NonAssociativeRing
SemiRng
EntireRing
Hashable
BasicType
BiModule(%, %)
SemiRing
FullyRetractableTo(R)