UnivariateSkewPolynomialCategory(R)
ore.spad line 46
[edit on github]
This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by x a = \sigma(a) x + \delta a
. This category is an evolution of the types MonogenicLinearOperator, OppositeMonogenicLinearOperator, and NonCommutativeOperatorDivision developed by Jean Della Dora and Stephen M
. Watt.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
- from RightModule(Integer)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, R) -> % if R has Field
- from AbelianMonoidRing(R, NonNegativeInteger)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- apply : (%, R, R) -> R
apply(p, c, m)
returns p(m)
where the action is given by x m = c sigma(m) + delta(m)
.
- associates? : (%, %) -> Boolean if R has EntireRing
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, List(SingletonAsOrderedSet), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- coefficient : (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- coefficient : (%, NonNegativeInteger) -> R
- from FreeModuleCategory(R, NonNegativeInteger)
- coefficients : % -> List(R)
- from FreeModuleCategory(R, NonNegativeInteger)
- coerce : % -> % if R has IntegralDomain and % has VariablesCommuteWithCoefficients or R has CommutativeRing and % has VariablesCommuteWithCoefficients
- from Algebra(%)
- coerce : R -> %
- from Algebra(R)
- coerce : Fraction(Integer) -> % if R has RetractableTo(Fraction(Integer)) or R has Algebra(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- construct : List(Record(k : NonNegativeInteger, c : R)) -> %
- from IndexedProductCategory(R, NonNegativeInteger)
- constructOrdered : List(Record(k : NonNegativeInteger, c : R)) -> %
- from IndexedProductCategory(R, NonNegativeInteger)
- content : % -> R if R has GcdDomain
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- degree : (%, List(SingletonAsOrderedSet)) -> List(NonNegativeInteger)
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- degree : % -> NonNegativeInteger
- from AbelianMonoidRing(R, NonNegativeInteger)
- degree : (%, SingletonAsOrderedSet) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- exquo : (%, %) -> Union(%, "failed") if R has EntireRing
- from EntireRing
- exquo : (%, R) -> Union(%, "failed") if R has EntireRing
exquo(l, a)
returns the exact quotient of l
by a, returning "failed"
if this is not possible.
- fmecg : (%, NonNegativeInteger, R, %) -> %
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- ground : % -> R
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- ground? : % -> Boolean
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> R
- from IndexedProductCategory(R, NonNegativeInteger)
- leadingMonomial : % -> %
- from IndexedProductCategory(R, NonNegativeInteger)
- leadingSupport : % -> NonNegativeInteger
- from IndexedProductCategory(R, NonNegativeInteger)
- leadingTerm : % -> Record(k : NonNegativeInteger, c : R)
- from IndexedProductCategory(R, NonNegativeInteger)
- leftDivide : (%, %) -> Record(quotient : %, remainder : %) if R has Field
leftDivide(a, b)
returns the pair [q, r]
such that a = b*q + r
and the degree of r
is less than the degree of b
. This process is called ``left division''
.
- leftExactQuotient : (%, %) -> Union(%, "failed") if R has Field
leftExactQuotient(a, b)
computes the value q
, if it exists, such that a = b*q
.
- leftExtendedGcd : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if R has Field
leftExtendedGcd(a, b)
returns [c, d, g]
such that g = a * c + b * d = leftGcd(a, b)
.
- leftGcd : (%, %) -> % if R has Field
leftGcd(a, b)
computes the value g
of highest degree such that a = g*aa
b = g*bb
for some values aa
and bb
. The value g
is computed using left-division.
- leftLcm : (%, %) -> % if R has Field
leftLcm(a, b)
computes the value m
of lowest degree such that m = aa*a = bb*b
for some values aa
and bb
. The value m
is computed using right-division.
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftQuotient : (%, %) -> % if R has Field
leftQuotient(a, b)
computes the pair [q, r]
such that a = b*q + r
and the degree of r
is less than the degree of b
. The value q
is returned.
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- leftRemainder : (%, %) -> % if R has Field
leftRemainder(a, b)
computes the pair [q, r]
such that a = b*q + r
and the degree of r
is less than the degree of b
. The value r
is returned.
- linearExtend : (Mapping(R, NonNegativeInteger), %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, NonNegativeInteger)
- listOfTerms : % -> List(Record(k : NonNegativeInteger, c : R))
- from IndexedDirectProductCategory(R, NonNegativeInteger)
- mainVariable : % -> Union(SingletonAsOrderedSet, "failed")
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, NonNegativeInteger)
- mapExponents : (Mapping(NonNegativeInteger, NonNegativeInteger), %) -> %
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- minimumDegree : % -> NonNegativeInteger
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- monicLeftDivide : (%, %) -> Record(quotient : %, remainder : %) if R has IntegralDomain
monicLeftDivide(a, b)
returns the pair [q, r]
such that a = b*q + r
and the degree of r
is less than the degree of b
. b
must be monic. This process is called ``left division''
.
- monicRightDivide : (%, %) -> Record(quotient : %, remainder : %) if R has IntegralDomain
monicRightDivide(a, b)
returns the pair [q, r]
such that a = q*b + r
and the degree of r
is less than the degree of b
. b
must be monic. This process is called ``right division''
.
- monomial : (%, List(SingletonAsOrderedSet), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- monomial : (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- monomial : (R, NonNegativeInteger) -> %
- from IndexedProductCategory(R, NonNegativeInteger)
- monomial? : % -> Boolean
- from IndexedProductCategory(R, NonNegativeInteger)
- monomials : % -> List(%)
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, NonNegativeInteger)
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing or R has Algebra(Fraction(Integer))
- from NonAssociativeAlgebra(R)
- pomopo! : (%, R, NonNegativeInteger, %) -> %
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- primitiveMonomials : % -> List(%)
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- primitivePart : % -> % if R has GcdDomain
- from FiniteAbelianMonoidRing(R, NonNegativeInteger)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reducedSystem : Matrix(%) -> Matrix(R)
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reductum : % -> %
- from IndexedProductCategory(R, NonNegativeInteger)
- retract : % -> R
- from RetractableTo(R)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightDivide : (%, %) -> Record(quotient : %, remainder : %) if R has Field
rightDivide(a, b)
returns the pair [q, r]
such that a = q*b + r
and the degree of r
is less than the degree of b
. This process is called ``right division''
.
- rightExactQuotient : (%, %) -> Union(%, "failed") if R has Field
rightExactQuotient(a, b)
computes the value q
, if it exists such that a = q*b
.
- rightExtendedGcd : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if R has Field
rightExtendedGcd(a, b)
returns [c, d, g]
such that g = c * a + d * b = rightGcd(a, b)
.
- rightGcd : (%, %) -> % if R has Field
rightGcd(a, b)
computes the value g
of highest degree such that a = aa*g
b = bb*g
for some values aa
and bb
. The value g
is computed using right-division.
- rightLcm : (%, %) -> % if R has Field
rightLcm(a, b)
computes the value m
of lowest degree such that m = a*aa = b*bb
for some values aa
and bb
. The value m
is computed using left-division.
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightQuotient : (%, %) -> % if R has Field
rightQuotient(a, b)
computes the pair [q, r]
such that a = q*b + r
and the degree of r
is less than the degree of b
. The value q
is returned.
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- rightRemainder : (%, %) -> % if R has Field
rightRemainder(a, b)
computes the pair [q, r]
such that a = q*b + r
and the degree of r
is less than the degree of b
. The value r
is returned.
- right_ext_ext_GCD : (%, %) -> Record(generator : %, coef1 : %, coef2 : %, coefu : %, coefv : %) if R has Field
right_ext_ext_GCD(a, b)
returns g, c, d, u, v
such that g = c * a + d * b = rightGcd(a, b)
, u * a = - v * b = leftLcm(a, b)
and matrix matrix([[c, d], [u, v]])
is invertible.
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- support : % -> List(NonNegativeInteger)
- from FreeModuleCategory(R, NonNegativeInteger)
- totalDegree : % -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- totalDegree : (%, List(SingletonAsOrderedSet)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- totalDegreeSorted : (%, List(SingletonAsOrderedSet)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- unit? : % -> Boolean if R has EntireRing
- from EntireRing
- unitCanonical : % -> % if R has EntireRing
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
- from EntireRing
- variables : % -> List(SingletonAsOrderedSet)
- from MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CharacteristicNonZero
Module(Fraction(Integer))
NonAssociativeSemiRing
LeftModule(R)
BiModule(%, %)
FreeModuleCategory(R, NonNegativeInteger)
canonicalUnitNormal
Rng
CoercibleFrom(Integer)
TwoSidedRecip
FullyRetractableTo(R)
SemiRing
EntireRing
NonAssociativeAlgebra(Fraction(Integer))
unitsKnown
FullyLinearlyExplicitOver(R)
CoercibleTo(OutputForm)
noZeroDivisors
RetractableTo(Fraction(Integer))
Magma
SemiGroup
IntegralDomain
LeftModule(%)
IndexedProductCategory(R, NonNegativeInteger)
NonAssociativeRing
CharacteristicZero
Module(R)
CommutativeRing
Algebra(%)
BiModule(R, R)
RightModule(Fraction(Integer))
Algebra(R)
RightModule(R)
FiniteAbelianMonoidRing(R, NonNegativeInteger)
NonAssociativeSemiRng
CancellationAbelianMonoid
RetractableTo(Integer)
LinearlyExplicitOver(R)
CommutativeStar
AbelianMonoid
MagmaWithUnit
Comparable
RightModule(%)
AbelianProductCategory(R)
Module(%)
LinearlyExplicitOver(Integer)
SemiRng
Monoid
IndexedDirectProductCategory(R, NonNegativeInteger)
NonAssociativeAlgebra(%)
Algebra(Fraction(Integer))
BasicType
Ring
RightModule(Integer)
LeftModule(Fraction(Integer))
AbelianSemiGroup
SetCategory
CoercibleFrom(Fraction(Integer))
NonAssociativeRng
AbelianMonoidRing(R, NonNegativeInteger)
MaybeSkewPolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
CoercibleFrom(R)
BiModule(Fraction(Integer), Fraction(Integer))
RetractableTo(R)
AbelianGroup
NonAssociativeAlgebra(R)