GeneralizedUnivariatePowerSeries(Coef, Expon, var, cen)
genser.spad line 194
[edit on github]
Domain for univariate power series with variable coefficients.
- * : (%, %) -> %
- from Magma
- * : (%, Coef) -> %
- from RightModule(Coef)
- * : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (Coef, %) -> %
- from LeftModule(Coef)
- * : (Fraction(Integer), %) -> % if Coef has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> % if Coef has Field and Expon has AbelianGroup
- from Field
- / : (%, Coef) -> % if Coef has Field
- from AbelianMonoidRing(Coef, Expon)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : % -> % if Coef has * : (Expon, Coef) -> Coef
- from DifferentialRing
- D : (%, List(Symbol)) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, NonNegativeInteger) -> % if Coef has * : (Expon, Coef) -> Coef
- from DifferentialRing
- D : (%, Symbol) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- ^ : (%, %) -> % if Coef has Algebra(Fraction(Integer))
- from ElementaryFunctionCategory
- ^ : (%, Integer) -> % if Coef has Field and Expon has AbelianGroup
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- acos : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- acosh : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- acot : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- acoth : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- acsc : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- acsch : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- apply_taylor : (Stream(Coef), %) -> %
apply_taylor(ts, s)
applies Taylor series with coefficients ts
to s
, that is computes infinite sum ts
(0) + ts
(1)*s
+ ts
(2)*s^2
+ ... Note: s
must be of positive order
- approximate : (%, Expon) -> Coef if Coef has coerce : Symbol -> Coef and Coef has ^ : (Coef, Expon) -> Coef
- from UnivariatePowerSeriesCategory(Coef, Expon)
- asec : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- asech : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- asin : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- asinh : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- associates? : (%, %) -> Boolean if Coef has IntegralDomain
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- atan : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- atanh : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- center : % -> Coef
- from UnivariatePowerSeriesCategory(Coef, Expon)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if Coef has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, Expon) -> Coef
- from AbelianMonoidRing(Coef, Expon)
- coerce : % -> % if Coef has CommutativeRing
- from Algebra(%)
- coerce : Coef -> % if Coef has CommutativeRing
- from Algebra(Coef)
- coerce : Fraction(Integer) -> % if Coef has Algebra(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- complete : % -> %
- from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
- construct : List(Record(k : Expon, c : Coef)) -> %
- from IndexedProductCategory(Coef, Expon)
- constructOrdered : List(Record(k : Expon, c : Coef)) -> %
- from IndexedProductCategory(Coef, Expon)
- cos : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- cosh : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- cot : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- coth : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- csc : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- csch : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- degree : % -> Expon
- from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
- differentiate : % -> % if Coef has * : (Expon, Coef) -> Coef
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, NonNegativeInteger) -> % if Coef has * : (Expon, Coef) -> Coef
- from DifferentialRing
- differentiate : (%, Symbol) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- divide : (%, %) -> Record(quotient : %, remainder : %) if Coef has Field and Expon has AbelianGroup
- from EuclideanDomain
- elt : (%, %) -> %
- from Eltable(%, %)
- elt : (%, Expon) -> Coef
- from UnivariatePowerSeriesCategory(Coef, Expon)
- euclideanSize : % -> NonNegativeInteger if Coef has Field and Expon has AbelianGroup
- from EuclideanDomain
- eval : (%, Coef) -> Stream(Coef) if Coef has ^ : (Coef, Expon) -> Coef
- from UnivariatePowerSeriesCategory(Coef, Expon)
- exp : % -> % if Coef has Algebra(Fraction(Integer))
- from ElementaryFunctionCategory
- expressIdealMember : (List(%), %) -> Union(List(%), "failed") if Coef has Field and Expon has AbelianGroup
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed") if Coef has IntegralDomain
- from EntireRing
- extend : (%, Expon) -> %
- from UnivariatePowerSeriesCategory(Coef, Expon)
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if Coef has Field and Expon has AbelianGroup
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed") if Coef has Field and Expon has AbelianGroup
- from EuclideanDomain
- factor : % -> Factored(%) if Coef has Field and Expon has AbelianGroup
- from UniqueFactorizationDomain
- gcd : (%, %) -> % if Coef has Field and Expon has AbelianGroup
- from GcdDomain
- gcd : List(%) -> % if Coef has Field and Expon has AbelianGroup
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if Coef has Field and Expon has AbelianGroup
- from GcdDomain
- infsum : Stream(%) -> %
infsum(x)
computes sum of all elements of x
. Degrees of elements of x
must be nondecreasing and tend to infinity.
- inv : % -> % if Coef has Field and Expon has AbelianGroup
- from DivisionRing
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> % if Coef has Field and Expon has AbelianGroup
- from GcdDomain
- lcm : List(%) -> % if Coef has Field and Expon has AbelianGroup
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if Coef has Field and Expon has AbelianGroup
- from LeftOreRing
- leadingCoefficient : % -> Coef
- from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
- leadingMonomial : % -> %
- from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
- leadingSupport : % -> Expon
- from IndexedProductCategory(Coef, Expon)
- leadingTerm : % -> Record(k : Expon, c : Coef)
- from IndexedProductCategory(Coef, Expon)
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- log : % -> % if Coef has Algebra(Fraction(Integer))
- from ElementaryFunctionCategory
- map : (Mapping(Coef, Coef), %) -> %
- from IndexedProductCategory(Coef, Expon)
- monomial : (Coef, Expon) -> %
- from IndexedProductCategory(Coef, Expon)
- monomial? : % -> Boolean
- from IndexedProductCategory(Coef, Expon)
- multiEuclidean : (List(%), %) -> Union(List(%), "failed") if Coef has Field and Expon has AbelianGroup
- from EuclideanDomain
- multiplyExponents : (%, PositiveInteger) -> %
- from UnivariatePowerSeriesCategory(Coef, Expon)
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : % -> Expon
- from UnivariatePowerSeriesCategory(Coef, Expon)
- order : (%, Expon) -> Expon
- from UnivariatePowerSeriesCategory(Coef, Expon)
- pi : () -> % if Coef has Algebra(Fraction(Integer))
- from TranscendentalFunctionCategory
- plenaryPower : (%, PositiveInteger) -> % if Coef has Algebra(Fraction(Integer)) or Coef has CommutativeRing
- from NonAssociativeAlgebra(%)
- pole? : % -> Boolean
- from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
- prime? : % -> Boolean if Coef has Field and Expon has AbelianGroup
- from UniqueFactorizationDomain
- principalIdeal : List(%) -> Record(coef : List(%), generator : %) if Coef has Field and Expon has AbelianGroup
- from PrincipalIdealDomain
- quo : (%, %) -> % if Coef has Field and Expon has AbelianGroup
- from EuclideanDomain
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reductum : % -> %
- from IndexedProductCategory(Coef, Expon)
- rem : (%, %) -> % if Coef has Field and Expon has AbelianGroup
- from EuclideanDomain
- removeZeros : (%, Expon) -> %
removeZeros(s, k)
removes leading zero terms in s
with exponent smaller than k
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- sec : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- sech : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- sin : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- sinh : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- sizeLess? : (%, %) -> Boolean if Coef has Field and Expon has AbelianGroup
- from EuclideanDomain
- squareFree : % -> Factored(%) if Coef has Field and Expon has AbelianGroup
- from UniqueFactorizationDomain
- squareFreePart : % -> % if Coef has Field and Expon has AbelianGroup
- from UniqueFactorizationDomain
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- tan : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- tanh : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- terms : % -> Stream(Record(k : Expon, c : Coef))
- from UnivariatePowerSeriesCategory(Coef, Expon)
- truncate : (%, Expon) -> %
- from UnivariatePowerSeriesCategory(Coef, Expon)
- truncate : (%, Expon, Expon) -> %
- from UnivariatePowerSeriesCategory(Coef, Expon)
- unit? : % -> Boolean if Coef has IntegralDomain
- from EntireRing
- unitCanonical : % -> % if Coef has IntegralDomain
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if Coef has IntegralDomain
- from EntireRing
- variable : % -> Symbol
- from UnivariatePowerSeriesCategory(Coef, Expon)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Module(Fraction(Integer))
PrincipalIdealDomain
Module(Coef)
NonAssociativeSemiRing
BiModule(%, %)
Field
canonicalUnitNormal
ArcTrigonometricFunctionCategory
TwoSidedRecip
TranscendentalFunctionCategory
SemiRing
EntireRing
Rng
RightModule(Coef)
NonAssociativeAlgebra(Fraction(Integer))
unitsKnown
NonAssociativeSemiRng
CharacteristicNonZero
MagmaWithUnit
noZeroDivisors
AbelianProductCategory(Coef)
UniqueFactorizationDomain
SemiGroup
RightModule(Fraction(Integer))
Magma
GcdDomain
LeftModule(%)
NonAssociativeRing
canonicalsClosed
ArcHyperbolicFunctionCategory
PartialDifferentialRing(Symbol)
CharacteristicZero
Algebra(%)
CommutativeRing
DifferentialRing
IndexedProductCategory(Coef, Expon)
DivisionRing
Eltable(%, %)
LeftOreRing
CancellationAbelianMonoid
EuclideanDomain
VariablesCommuteWithCoefficients
NonAssociativeAlgebra(Coef)
UnivariatePowerSeriesCategory(Coef, Expon)
CommutativeStar
AbelianMonoid
ElementaryFunctionCategory
RightModule(%)
BiModule(Coef, Coef)
LeftModule(Coef)
AbelianMonoidRing(Coef, Expon)
Module(%)
CoercibleTo(OutputForm)
Algebra(Coef)
SemiRng
Monoid
NonAssociativeAlgebra(%)
Algebra(Fraction(Integer))
BasicType
Ring
LeftModule(Fraction(Integer))
AbelianSemiGroup
IntegralDomain
SetCategory
TrigonometricFunctionCategory
NonAssociativeRng
BiModule(Fraction(Integer), Fraction(Integer))
HyperbolicFunctionCategory
AbelianGroup
PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)