IntegerLocalizedAtPrime(p)

intlocp.spad line 1 [edit on github]

IntegerLocalizedAtPrime(p) represents the Euclidean domain of integers localized at a prime p, i.e. the set of rational numbers whose denominator is not divisible by p.

* : (%, %) -> %
from Magma
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
< : (%, %) -> Boolean
from PartialOrder
<= : (%, %) -> Boolean
from PartialOrder
= : (%, %) -> Boolean
from BasicType
> : (%, %) -> Boolean
from PartialOrder
>= : (%, %) -> Boolean
from PartialOrder
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
abs : % -> %
from OrderedRing
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : % -> %
from Algebra(%)
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> Fraction(Integer)
from CoercibleTo(Fraction(Integer))
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
divide : (%, %) -> Record(quotient : %, remainder : %)
from EuclideanDomain
euclideanSize : % -> NonNegativeInteger
from EuclideanDomain
exponent : % -> NonNegativeInteger

Each element x can be written as x=p^n*a/b with gcd(p,a)=gcd(p,b)=1. exponent(x) returns n.

expressIdealMember : (List(%), %) -> Union(List(%), "failed")
from PrincipalIdealDomain
exquo : (%, %) -> Union(%, "failed")
from EntireRing
extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
from EuclideanDomain
extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
from EuclideanDomain
gcd : (%, %) -> %
from GcdDomain
gcd : List(%) -> %
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
from GcdDomain
hash : % -> SingleInteger
from Hashable
hashUpdate! : (HashState, %) -> HashState
from Hashable
latex : % -> String
from SetCategory
lcm : (%, %) -> %
from GcdDomain
lcm : List(%) -> %
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
from LeftOreRing
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
max : (%, %) -> %
from OrderedSet
min : (%, %) -> %
from OrderedSet
multiEuclidean : (List(%), %) -> Union(List(%), "failed")
from EuclideanDomain
negative? : % -> Boolean
from OrderedRing
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
positive? : % -> Boolean
from OrderedRing
principalIdeal : List(%) -> Record(coef : List(%), generator : %)
from PrincipalIdealDomain
quo : (%, %) -> %
from EuclideanDomain
recip : % -> Union(%, "failed")
from MagmaWithUnit
rem : (%, %) -> %
from EuclideanDomain
retract : Fraction(Integer) -> %
from RetractableFrom(Fraction(Integer))
retract : % -> Integer
from RetractableTo(Integer)
retractIfCan : Fraction(Integer) -> Union(%, "failed")
from RetractableFrom(Fraction(Integer))
retractIfCan : % -> Union(Integer, "failed")
from RetractableTo(Integer)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
sign : % -> Integer
from OrderedRing
sizeLess? : (%, %) -> Boolean
from EuclideanDomain
smaller? : (%, %) -> Boolean
from Comparable
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
unit? : % -> Boolean
from EntireRing
unitCanonical : % -> %
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %)
from EntireRing
unitPart : % -> Fraction(Integer)

Each element x can be written as x=p^n*a/b with gcd(p,a)=gcd(p,b)=1. unitPart(x) returns a/b.

zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

Comparable

noZeroDivisors

RetractableFrom(Fraction(Integer))

OrderedAbelianSemiGroup

RightModule(%)

Monoid

Algebra(%)

AbelianMonoid

EuclideanDomain

EntireRing

CancellationAbelianMonoid

MagmaWithUnit

NonAssociativeRing

OrderedCancellationAbelianMonoid

RetractableTo(Integer)

CommutativeStar

LeftModule(%)

canonicalUnitNormal

OrderedSet

Module(%)

SetCategory

LeftOreRing

CoercibleTo(OutputForm)

CommutativeRing

IntegralDomain

TwoSidedRecip

Magma

Rng

SemiGroup

OrderedAbelianMonoid

PartialOrder

BiModule(%, %)

CoercibleFrom(Integer)

unitsKnown

AbelianGroup

AbelianSemiGroup

GcdDomain

NonAssociativeSemiRing

NonAssociativeAlgebra(%)

OrderedAbelianGroup

OrderedRing

PrincipalIdealDomain

NonAssociativeRng

CoercibleTo(Fraction(Integer))

Ring

SemiRng

NonAssociativeSemiRng

Hashable

CharacteristicZero

BasicType

SemiRing