IntegerLocalizedAtPrime(p)
intlocp.spad line 1
[edit on github]
IntegerLocalizedAtPrime(p
) represents the Euclidean domain of integers localized at a prime p
, i.e. the set of rational numbers whose denominator is not divisible by p
.
- * : (%, %) -> %
- from Magma
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- < : (%, %) -> Boolean
- from PartialOrder
- <= : (%, %) -> Boolean
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean
- from PartialOrder
- >= : (%, %) -> Boolean
- from PartialOrder
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- abs : % -> %
- from OrderedRing
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : % -> %
- from Algebra(%)
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> Fraction(Integer)
- from CoercibleTo(Fraction(Integer))
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- divide : (%, %) -> Record(quotient : %, remainder : %)
- from EuclideanDomain
- euclideanSize : % -> NonNegativeInteger
- from EuclideanDomain
- exponent : % -> NonNegativeInteger
Each element x
can be written as x=p^n*a/b with gcd
(p
,a)=gcd(p
,b
)=1
. exponent(x
) returns n
.
- expressIdealMember : (List(%), %) -> Union(List(%), "failed")
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
- from EuclideanDomain
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from GcdDomain
- hash : % -> SingleInteger
- from Hashable
- hashUpdate! : (HashState, %) -> HashState
- from Hashable
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- max : (%, %) -> %
- from OrderedSet
- min : (%, %) -> %
- from OrderedSet
- multiEuclidean : (List(%), %) -> Union(List(%), "failed")
- from EuclideanDomain
- negative? : % -> Boolean
- from OrderedRing
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- positive? : % -> Boolean
- from OrderedRing
- principalIdeal : List(%) -> Record(coef : List(%), generator : %)
- from PrincipalIdealDomain
- quo : (%, %) -> %
- from EuclideanDomain
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rem : (%, %) -> %
- from EuclideanDomain
- retract : Fraction(Integer) -> %
- from RetractableFrom(Fraction(Integer))
- retract : % -> Integer
- from RetractableTo(Integer)
- retractIfCan : Fraction(Integer) -> Union(%, "failed")
- from RetractableFrom(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed")
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- sign : % -> Integer
- from OrderedRing
- sizeLess? : (%, %) -> Boolean
- from EuclideanDomain
- smaller? : (%, %) -> Boolean
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- unitPart : % -> Fraction(Integer)
Each element x
can be written as x=p^n*a/b with gcd
(p
,a)=gcd(p
,b
)=1
. unitPart(x
) returns a/b.
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Comparable
noZeroDivisors
RetractableFrom(Fraction(Integer))
OrderedAbelianSemiGroup
RightModule(%)
Monoid
Algebra(%)
AbelianMonoid
EuclideanDomain
EntireRing
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
OrderedCancellationAbelianMonoid
RetractableTo(Integer)
CommutativeStar
LeftModule(%)
canonicalUnitNormal
OrderedSet
Module(%)
SetCategory
LeftOreRing
CoercibleTo(OutputForm)
CommutativeRing
IntegralDomain
TwoSidedRecip
Magma
Rng
SemiGroup
OrderedAbelianMonoid
PartialOrder
BiModule(%, %)
CoercibleFrom(Integer)
unitsKnown
AbelianGroup
AbelianSemiGroup
GcdDomain
NonAssociativeSemiRing
NonAssociativeAlgebra(%)
OrderedAbelianGroup
OrderedRing
PrincipalIdealDomain
NonAssociativeRng
CoercibleTo(Fraction(Integer))
Ring
SemiRng
NonAssociativeSemiRng
Hashable
CharacteristicZero
BasicType
SemiRing