LinearOrdinaryDifferentialOperator(A, diff)
lodo.spad line 152
[edit on github]
- A : Ring
- diff : Mapping(A, A)
LinearOrdinaryDifferentialOperator
defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: (L1 * L2).(f) = L1 L2 f
- * : (%, %) -> %
- from Magma
- * : (%, A) -> %
- from RightModule(A)
- * : (%, Fraction(Integer)) -> % if A has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if A has LinearlyExplicitOver(Integer)
- from RightModule(Integer)
- * : (A, %) -> %
- from LeftModule(A)
- * : (Fraction(Integer), %) -> % if A has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, A) -> % if A has Field
- from AbelianMonoidRing(A, NonNegativeInteger)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : () -> %
- from LinearOrdinaryDifferentialOperatorCategory(A)
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- adjoint : % -> %
- from LinearOrdinaryDifferentialOperatorCategory(A)
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- apply : (%, A, A) -> A
- from UnivariateSkewPolynomialCategory(A)
- associates? : (%, %) -> Boolean if A has EntireRing
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- from FiniteAbelianMonoidRing(A, NonNegativeInteger)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if A has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, List(SingletonAsOrderedSet), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(A, NonNegativeInteger, SingletonAsOrderedSet)
- coefficient : (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(A, NonNegativeInteger, SingletonAsOrderedSet)
- coefficient : (%, NonNegativeInteger) -> A
- from AbelianMonoidRing(A, NonNegativeInteger)
- coefficients : % -> List(A)
- from FreeModuleCategory(A, NonNegativeInteger)
- coerce : % -> % if % has VariablesCommuteWithCoefficients and A has IntegralDomain or % has VariablesCommuteWithCoefficients and A has CommutativeRing
- from Algebra(%)
- coerce : A -> %
- from CoercibleFrom(A)
- coerce : Fraction(Integer) -> % if A has Algebra(Fraction(Integer)) or A has RetractableTo(Fraction(Integer))
- from CoercibleFrom(Fraction(Integer))
- coerce : Integer -> %
- from CoercibleFrom(Integer)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- construct : List(Record(k : NonNegativeInteger, c : A)) -> %
- from IndexedProductCategory(A, NonNegativeInteger)
- constructOrdered : List(Record(k : NonNegativeInteger, c : A)) -> %
- from IndexedProductCategory(A, NonNegativeInteger)
- content : % -> A if A has GcdDomain
- from FiniteAbelianMonoidRing(A, NonNegativeInteger)
- degree : (%, List(SingletonAsOrderedSet)) -> List(NonNegativeInteger)
- from MaybeSkewPolynomialCategory(A, NonNegativeInteger, SingletonAsOrderedSet)
- degree : % -> NonNegativeInteger
- from AbelianMonoidRing(A, NonNegativeInteger)
- degree : (%, SingletonAsOrderedSet) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(A, NonNegativeInteger, SingletonAsOrderedSet)
- directSum : (%, %) -> % if A has Field
- from LinearOrdinaryDifferentialOperatorCategory(A)
- elt : (%, A) -> A
- from Eltable(A, A)
- exquo : (%, %) -> Union(%, "failed") if A has EntireRing
- from EntireRing
- exquo : (%, A) -> Union(%, "failed") if A has EntireRing
- from UnivariateSkewPolynomialCategory(A)
- fmecg : (%, NonNegativeInteger, A, %) -> %
- from FiniteAbelianMonoidRing(A, NonNegativeInteger)
- ground : % -> A
- from FiniteAbelianMonoidRing(A, NonNegativeInteger)
- ground? : % -> Boolean
- from FiniteAbelianMonoidRing(A, NonNegativeInteger)
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> A
- from IndexedProductCategory(A, NonNegativeInteger)
- leadingMonomial : % -> %
- from IndexedProductCategory(A, NonNegativeInteger)
- leadingSupport : % -> NonNegativeInteger
- from IndexedProductCategory(A, NonNegativeInteger)
- leadingTerm : % -> Record(k : NonNegativeInteger, c : A)
- from IndexedProductCategory(A, NonNegativeInteger)
- leftDivide : (%, %) -> Record(quotient : %, remainder : %) if A has Field
- from UnivariateSkewPolynomialCategory(A)
- leftExactQuotient : (%, %) -> Union(%, "failed") if A has Field
- from UnivariateSkewPolynomialCategory(A)
- leftExtendedGcd : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if A has Field
- from UnivariateSkewPolynomialCategory(A)
- leftGcd : (%, %) -> % if A has Field
- from UnivariateSkewPolynomialCategory(A)
- leftLcm : (%, %) -> % if A has Field
- from UnivariateSkewPolynomialCategory(A)
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftQuotient : (%, %) -> % if A has Field
- from UnivariateSkewPolynomialCategory(A)
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- leftRemainder : (%, %) -> % if A has Field
- from UnivariateSkewPolynomialCategory(A)
- linearExtend : (Mapping(A, NonNegativeInteger), %) -> A if A has CommutativeRing
- from FreeModuleCategory(A, NonNegativeInteger)
- listOfTerms : % -> List(Record(k : NonNegativeInteger, c : A))
- from IndexedDirectProductCategory(A, NonNegativeInteger)
- mainVariable : % -> Union(SingletonAsOrderedSet, "failed")
- from MaybeSkewPolynomialCategory(A, NonNegativeInteger, SingletonAsOrderedSet)
- map : (Mapping(A, A), %) -> %
- from IndexedProductCategory(A, NonNegativeInteger)
- mapExponents : (Mapping(NonNegativeInteger, NonNegativeInteger), %) -> %
- from FiniteAbelianMonoidRing(A, NonNegativeInteger)
- minimumDegree : % -> NonNegativeInteger
- from FiniteAbelianMonoidRing(A, NonNegativeInteger)
- monicLeftDivide : (%, %) -> Record(quotient : %, remainder : %) if A has IntegralDomain
- from UnivariateSkewPolynomialCategory(A)
- monicRightDivide : (%, %) -> Record(quotient : %, remainder : %) if A has IntegralDomain
- from UnivariateSkewPolynomialCategory(A)
- monomial : (%, List(SingletonAsOrderedSet), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(A, NonNegativeInteger, SingletonAsOrderedSet)
- monomial : (%, SingletonAsOrderedSet, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(A, NonNegativeInteger, SingletonAsOrderedSet)
- monomial : (A, NonNegativeInteger) -> %
- from IndexedProductCategory(A, NonNegativeInteger)
- monomial? : % -> Boolean
- from IndexedProductCategory(A, NonNegativeInteger)
- monomials : % -> List(%)
- from MaybeSkewPolynomialCategory(A, NonNegativeInteger, SingletonAsOrderedSet)
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(A, NonNegativeInteger)
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if A has Algebra(Fraction(Integer)) or A has CommutativeRing
- from NonAssociativeAlgebra(%)
- pomopo! : (%, A, NonNegativeInteger, %) -> %
- from FiniteAbelianMonoidRing(A, NonNegativeInteger)
- primitiveMonomials : % -> List(%)
- from MaybeSkewPolynomialCategory(A, NonNegativeInteger, SingletonAsOrderedSet)
- primitivePart : % -> % if A has GcdDomain
- from FiniteAbelianMonoidRing(A, NonNegativeInteger)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reducedSystem : Matrix(%) -> Matrix(A)
- from LinearlyExplicitOver(A)
- reducedSystem : Matrix(%) -> Matrix(Integer) if A has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(A), vec : Vector(A))
- from LinearlyExplicitOver(A)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if A has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reductum : % -> %
- from IndexedProductCategory(A, NonNegativeInteger)
- retract : % -> A
- from RetractableTo(A)
- retract : % -> Fraction(Integer) if A has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if A has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(A, "failed")
- from RetractableTo(A)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if A has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if A has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightDivide : (%, %) -> Record(quotient : %, remainder : %) if A has Field
- from UnivariateSkewPolynomialCategory(A)
- rightExactQuotient : (%, %) -> Union(%, "failed") if A has Field
- from UnivariateSkewPolynomialCategory(A)
- rightExtendedGcd : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if A has Field
- from UnivariateSkewPolynomialCategory(A)
- rightGcd : (%, %) -> % if A has Field
- from UnivariateSkewPolynomialCategory(A)
- rightLcm : (%, %) -> % if A has Field
- from UnivariateSkewPolynomialCategory(A)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightQuotient : (%, %) -> % if A has Field
- from UnivariateSkewPolynomialCategory(A)
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- rightRemainder : (%, %) -> % if A has Field
- from UnivariateSkewPolynomialCategory(A)
- right_ext_ext_GCD : (%, %) -> Record(generator : %, coef1 : %, coef2 : %, coefu : %, coefv : %) if A has Field
- from UnivariateSkewPolynomialCategory(A)
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if A has Comparable
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- support : % -> List(NonNegativeInteger)
- from FreeModuleCategory(A, NonNegativeInteger)
- symmetricPower : (%, NonNegativeInteger) -> % if A has Field
- from LinearOrdinaryDifferentialOperatorCategory(A)
- symmetricProduct : (%, %) -> % if A has Field
- from LinearOrdinaryDifferentialOperatorCategory(A)
- symmetricSquare : % -> % if A has Field
- from LinearOrdinaryDifferentialOperatorCategory(A)
- totalDegree : % -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(A, NonNegativeInteger, SingletonAsOrderedSet)
- totalDegree : (%, List(SingletonAsOrderedSet)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(A, NonNegativeInteger, SingletonAsOrderedSet)
- totalDegreeSorted : (%, List(SingletonAsOrderedSet)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(A, NonNegativeInteger, SingletonAsOrderedSet)
- unit? : % -> Boolean if A has EntireRing
- from EntireRing
- unitCanonical : % -> % if A has EntireRing
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if A has EntireRing
- from EntireRing
- variables : % -> List(SingletonAsOrderedSet)
- from MaybeSkewPolynomialCategory(A, NonNegativeInteger, SingletonAsOrderedSet)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CharacteristicNonZero
Module(Fraction(Integer))
NonAssociativeSemiRing
BiModule(%, %)
canonicalUnitNormal
Rng
UnivariateSkewPolynomialCategory(A)
CoercibleFrom(Integer)
TwoSidedRecip
CancellationAbelianMonoid
LeftModule(A)
SemiRing
EntireRing
NonAssociativeAlgebra(Fraction(Integer))
unitsKnown
IndexedDirectProductCategory(A, NonNegativeInteger)
CoercibleTo(OutputForm)
RightModule(Integer)
noZeroDivisors
Magma
SemiGroup
BiModule(A, A)
LeftModule(%)
AbelianProductCategory(A)
NonAssociativeRing
CharacteristicZero
FullyRetractableTo(A)
Algebra(%)
RetractableTo(A)
CommutativeRing
CoercibleFrom(Fraction(Integer))
RightModule(Fraction(Integer))
NonAssociativeAlgebra(A)
NonAssociativeSemiRng
RetractableTo(Integer)
LinearOrdinaryDifferentialOperatorCategory(A)
CommutativeStar
FreeModuleCategory(A, NonNegativeInteger)
AbelianMonoid
MagmaWithUnit
Comparable
LinearlyExplicitOver(A)
RightModule(%)
IndexedProductCategory(A, NonNegativeInteger)
FiniteAbelianMonoidRing(A, NonNegativeInteger)
Module(%)
CoercibleFrom(A)
AbelianMonoidRing(A, NonNegativeInteger)
SemiRng
LinearlyExplicitOver(Integer)
Monoid
Eltable(A, A)
NonAssociativeAlgebra(%)
Algebra(Fraction(Integer))
BasicType
Ring
RightModule(A)
LeftModule(Fraction(Integer))
AbelianSemiGroup
IntegralDomain
SetCategory
Algebra(A)
NonAssociativeRng
MaybeSkewPolynomialCategory(A, NonNegativeInteger, SingletonAsOrderedSet)
BiModule(Fraction(Integer), Fraction(Integer))
RetractableTo(Fraction(Integer))
FullyLinearlyExplicitOver(A)
AbelianGroup
Module(A)