RealClosedField
reclos.spad line 258
[edit on github]
RealClosedField provides common access functions for all real closed fields.
- * : (%, %) -> %
- from Magma
- * : (%, Fraction(Integer)) -> %
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> %
- from RightModule(Integer)
- * : (Fraction(Integer), %) -> %
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> %
- from Field
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- < : (%, %) -> Boolean
- from PartialOrder
- <= : (%, %) -> Boolean
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean
- from PartialOrder
- >= : (%, %) -> Boolean
- from PartialOrder
- ^ : (%, Fraction(Integer)) -> %
- from RadicalCategory
- ^ : (%, Integer) -> %
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- abs : % -> %
- from OrderedRing
- allRootsOf : Polynomial(%) -> List(%)
allRootsOf(pol)
creates all the roots of pol
naming each uniquely
- allRootsOf : Polynomial(Fraction(Integer)) -> List(%)
allRootsOf(pol)
creates all the roots of pol
naming each uniquely
- allRootsOf : Polynomial(Integer) -> List(%)
allRootsOf(pol)
creates all the roots of pol
naming each uniquely
- allRootsOf : SparseUnivariatePolynomial(%) -> List(%)
allRootsOf(pol)
creates all the roots of pol
naming each uniquely
- allRootsOf : SparseUnivariatePolynomial(Fraction(Integer)) -> List(%)
allRootsOf(pol)
creates all the roots of pol
naming each uniquely
- allRootsOf : SparseUnivariatePolynomial(Integer) -> List(%)
allRootsOf(pol)
creates all the roots of pol
naming each uniquely
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- approximate : (%, %) -> Fraction(Integer)
approximate(n, p)
gives an approximation of n
that has precision p
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : % -> %
- from Algebra(%)
- coerce : Fraction(Integer) -> %
- from CoercibleFrom(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- divide : (%, %) -> Record(quotient : %, remainder : %)
- from EuclideanDomain
- euclideanSize : % -> NonNegativeInteger
- from EuclideanDomain
- expressIdealMember : (List(%), %) -> Union(List(%), "failed")
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
- from EuclideanDomain
- factor : % -> Factored(%)
- from UniqueFactorizationDomain
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from GcdDomain
- inv : % -> %
- from DivisionRing
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- mainDefiningPolynomial : % -> Union(SparseUnivariatePolynomial(%), "failed")
mainDefiningPolynomial(x)
is the defining polynomial for the main algebraic quantity of x
- mainForm : % -> Union(OutputForm, "failed")
mainForm(x)
is the main algebraic quantity name of x
- mainValue : % -> Union(SparseUnivariatePolynomial(%), "failed")
mainValue(x)
is the expression of x
in terms of SparseUnivariatePolynomial(%)
- max : (%, %) -> %
- from OrderedSet
- min : (%, %) -> %
- from OrderedSet
- multiEuclidean : (List(%), %) -> Union(List(%), "failed")
- from EuclideanDomain
- negative? : % -> Boolean
- from OrderedRing
- nthRoot : (%, Integer) -> %
- from RadicalCategory
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(Integer)
- positive? : % -> Boolean
- from OrderedRing
- prime? : % -> Boolean
- from UniqueFactorizationDomain
- principalIdeal : List(%) -> Record(coef : List(%), generator : %)
- from PrincipalIdealDomain
- quo : (%, %) -> %
- from EuclideanDomain
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rem : (%, %) -> %
- from EuclideanDomain
- rename : (%, OutputForm) -> %
rename(x, name)
gives a new number that prints as name
- rename! : (%, OutputForm) -> %
rename!(x, name)
changes the way x
is printed
- retract : % -> Fraction(Integer)
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer
- from RetractableTo(Integer)
- retractIfCan : % -> Union(Fraction(Integer), "failed")
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed")
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- rootOf : (SparseUnivariatePolynomial(%), PositiveInteger) -> Union(%, "failed")
rootOf(pol, n)
creates the n
th root for the order of pol
and gives it unique name
- rootOf : (SparseUnivariatePolynomial(%), PositiveInteger, OutputForm) -> Union(%, "failed")
rootOf(pol, n, name)
creates the n
th root for the order of pol
and names it name
- sample : () -> %
- from AbelianMonoid
- sign : % -> Integer
- from OrderedRing
- sizeLess? : (%, %) -> Boolean
- from EuclideanDomain
- smaller? : (%, %) -> Boolean
- from Comparable
- sqrt : % -> %
sqrt(x)
is x ^ (1/2)
- sqrt : (%, PositiveInteger) -> %
sqrt(x, n)
is x ^ (1/n)
- sqrt : Fraction(Integer) -> %
sqrt(x)
is x ^ (1/2)
- sqrt : Integer -> %
sqrt(x)
is x ^ (1/2)
- squareFree : % -> Factored(%)
- from UniqueFactorizationDomain
- squareFreePart : % -> %
- from UniqueFactorizationDomain
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Module(Fraction(Integer))
PrincipalIdealDomain
PartialOrder
NonAssociativeSemiRing
BiModule(%, %)
Field
canonicalUnitNormal
Rng
CoercibleFrom(Integer)
TwoSidedRecip
OrderedAbelianGroup
SemiRing
EntireRing
NonAssociativeAlgebra(Fraction(Integer))
unitsKnown
RadicalCategory
Algebra(Integer)
LeftModule(Integer)
noZeroDivisors
RetractableTo(Fraction(Integer))
OrderedSet
UniqueFactorizationDomain
SemiGroup
NonAssociativeAlgebra(Integer)
RightModule(Fraction(Integer))
Magma
GcdDomain
LeftModule(%)
NonAssociativeSemiRng
CharacteristicZero
CommutativeRing
CoercibleFrom(Fraction(Integer))
Algebra(%)
OrderedAbelianMonoid
DivisionRing
LeftOreRing
CancellationAbelianMonoid
EuclideanDomain
canonicalsClosed
Comparable
RetractableTo(Integer)
OrderedCancellationAbelianMonoid
OrderedRing
CommutativeStar
AbelianMonoid
MagmaWithUnit
NonAssociativeRing
RightModule(%)
OrderedAbelianSemiGroup
Module(%)
CoercibleTo(OutputForm)
BiModule(Integer, Integer)
Module(Integer)
SemiRng
Monoid
NonAssociativeAlgebra(%)
Algebra(Fraction(Integer))
BasicType
Ring
RightModule(Integer)
LeftModule(Fraction(Integer))
AbelianSemiGroup
IntegralDomain
SetCategory
FullyRetractableTo(Fraction(Integer))
NonAssociativeRng
BiModule(Fraction(Integer), Fraction(Integer))
AbelianGroup