UnivariatePuiseuxSeries(Coef, var, cen)
puiseux.spad line 410
[edit on github]
Dense Puiseux series in one variable UnivariatePuiseuxSeries is a domain representing Puiseux series in one variable with coefficients in an arbitrary ring.The parameters of the type specify the coefficient ring, the power series variable, and the center of the power series expansion.For example, UnivariatePuiseuxSeries(Integer, x, 3)
represents Puiseux series in (x - 3)
with Integer coefficients.
- * : (%, %) -> %
- from Magma
- * : (%, Coef) -> %
- from RightModule(Coef)
- * : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (Coef, %) -> %
- from LeftModule(Coef)
- * : (Fraction(Integer), %) -> % if Coef has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> % if Coef has Field
- from Field
- / : (%, Coef) -> % if Coef has Field
- from AbelianMonoidRing(Coef, Fraction(Integer))
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : % -> % if Coef has * : (Fraction(Integer), Coef) -> Coef
- from DifferentialRing
- D : (%, List(Symbol)) -> % if Coef has * : (Fraction(Integer), Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if Coef has * : (Fraction(Integer), Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, NonNegativeInteger) -> % if Coef has * : (Fraction(Integer), Coef) -> Coef
- from DifferentialRing
- D : (%, Symbol) -> % if Coef has * : (Fraction(Integer), Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if Coef has * : (Fraction(Integer), Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- ^ : (%, %) -> % if Coef has Algebra(Fraction(Integer))
- from ElementaryFunctionCategory
- ^ : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
- from RadicalCategory
- ^ : (%, Integer) -> % if Coef has Field
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- acos : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- acosh : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- acot : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- acoth : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- acsc : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- acsch : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- approximate : (%, Fraction(Integer)) -> Coef if Coef has coerce : Symbol -> Coef and Coef has ^ : (Coef, Fraction(Integer)) -> Coef
- from UnivariatePowerSeriesCategory(Coef, Fraction(Integer))
- asec : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- asech : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- asin : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- asinh : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- associates? : (%, %) -> Boolean if Coef has IntegralDomain
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- atan : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- atanh : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- center : % -> Coef
- from UnivariatePowerSeriesCategory(Coef, Fraction(Integer))
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if Coef has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, Fraction(Integer)) -> Coef
- from AbelianMonoidRing(Coef, Fraction(Integer))
- coerce : % -> % if Coef has CommutativeRing
- from Algebra(%)
- coerce : Coef -> % if Coef has CommutativeRing
- from Algebra(Coef)
- coerce : Fraction(Integer) -> % if Coef has Algebra(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : UnivariateLaurentSeries(Coef, var, cen) -> %
- from UnivariatePuiseuxSeriesConstructorCategory(Coef, UnivariateLaurentSeries(Coef, var, cen))
- coerce : UnivariateTaylorSeries(Coef, var, cen) -> %
- from CoercibleFrom(UnivariateTaylorSeries(Coef, var, cen))
- coerce : Variable(var) -> %
coerce(var)
converts the series variable var
into a Puiseux series.
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- complete : % -> %
- from PowerSeriesCategory(Coef, Fraction(Integer), SingletonAsOrderedSet)
- construct : List(Record(k : Fraction(Integer), c : Coef)) -> %
- from IndexedProductCategory(Coef, Fraction(Integer))
- constructOrdered : List(Record(k : Fraction(Integer), c : Coef)) -> %
- from IndexedProductCategory(Coef, Fraction(Integer))
- cos : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- cosh : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- cot : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- coth : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- csc : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- csch : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- degree : % -> Fraction(Integer)
- from UnivariatePuiseuxSeriesConstructorCategory(Coef, UnivariateLaurentSeries(Coef, var, cen))
- differentiate : % -> % if Coef has * : (Fraction(Integer), Coef) -> Coef
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> % if Coef has * : (Fraction(Integer), Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if Coef has * : (Fraction(Integer), Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, NonNegativeInteger) -> % if Coef has * : (Fraction(Integer), Coef) -> Coef
- from DifferentialRing
- differentiate : (%, Symbol) -> % if Coef has * : (Fraction(Integer), Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if Coef has * : (Fraction(Integer), Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Variable(var)) -> %
differentiate(f(x), x)
returns the derivative of f(x)
with respect to x
.
- divide : (%, %) -> Record(quotient : %, remainder : %) if Coef has Field
- from EuclideanDomain
- elt : (%, %) -> %
- from Eltable(%, %)
- elt : (%, Fraction(Integer)) -> Coef
- from UnivariatePowerSeriesCategory(Coef, Fraction(Integer))
- euclideanSize : % -> NonNegativeInteger if Coef has Field
- from EuclideanDomain
- eval : (%, Coef) -> Stream(Coef) if Coef has ^ : (Coef, Fraction(Integer)) -> Coef
- from UnivariatePowerSeriesCategory(Coef, Fraction(Integer))
- exp : % -> % if Coef has Algebra(Fraction(Integer))
- from ElementaryFunctionCategory
- expressIdealMember : (List(%), %) -> Union(List(%), "failed") if Coef has Field
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed") if Coef has IntegralDomain
- from EntireRing
- extend : (%, Fraction(Integer)) -> %
- from UnivariatePowerSeriesCategory(Coef, Fraction(Integer))
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if Coef has Field
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed") if Coef has Field
- from EuclideanDomain
- factor : % -> Factored(%) if Coef has Field
- from UniqueFactorizationDomain
- gcd : (%, %) -> % if Coef has Field
- from GcdDomain
- gcd : List(%) -> % if Coef has Field
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if Coef has Field
- from GcdDomain
- integrate : % -> % if Coef has Algebra(Fraction(Integer))
- from UnivariateSeriesWithRationalExponents(Coef, Fraction(Integer))
- integrate : (%, Symbol) -> % if Coef has Algebra(Fraction(Integer)) and Coef has integrate : (Coef, Symbol) -> Coef and Coef has variables : Coef -> List(Symbol)
- from UnivariateSeriesWithRationalExponents(Coef, Fraction(Integer))
- integrate : (%, Variable(var)) -> % if Coef has Algebra(Fraction(Integer))
integrate(f(x))
returns an anti-derivative of the power series f(x)
with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.
- inv : % -> % if Coef has Field
- from DivisionRing
- latex : % -> String
- from SetCategory
- laurent : % -> UnivariateLaurentSeries(Coef, var, cen)
- from UnivariatePuiseuxSeriesConstructorCategory(Coef, UnivariateLaurentSeries(Coef, var, cen))
- laurentIfCan : % -> Union(UnivariateLaurentSeries(Coef, var, cen), "failed")
- from UnivariatePuiseuxSeriesConstructorCategory(Coef, UnivariateLaurentSeries(Coef, var, cen))
- laurentRep : % -> UnivariateLaurentSeries(Coef, var, cen)
- from UnivariatePuiseuxSeriesConstructorCategory(Coef, UnivariateLaurentSeries(Coef, var, cen))
- lcm : (%, %) -> % if Coef has Field
- from GcdDomain
- lcm : List(%) -> % if Coef has Field
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if Coef has Field
- from LeftOreRing
- leadingCoefficient : % -> Coef
- from PowerSeriesCategory(Coef, Fraction(Integer), SingletonAsOrderedSet)
- leadingMonomial : % -> %
- from PowerSeriesCategory(Coef, Fraction(Integer), SingletonAsOrderedSet)
- leadingSupport : % -> Fraction(Integer)
- from IndexedProductCategory(Coef, Fraction(Integer))
- leadingTerm : % -> Record(k : Fraction(Integer), c : Coef)
- from IndexedProductCategory(Coef, Fraction(Integer))
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- log : % -> % if Coef has Algebra(Fraction(Integer))
- from ElementaryFunctionCategory
- map : (Mapping(Coef, Coef), %) -> %
- from IndexedProductCategory(Coef, Fraction(Integer))
- monomial : (Coef, Fraction(Integer)) -> %
- from IndexedProductCategory(Coef, Fraction(Integer))
- monomial? : % -> Boolean
- from IndexedProductCategory(Coef, Fraction(Integer))
- multiEuclidean : (List(%), %) -> Union(List(%), "failed") if Coef has Field
- from EuclideanDomain
- multiplyExponents : (%, Fraction(Integer)) -> %
- from UnivariatePuiseuxSeriesCategory(Coef)
- multiplyExponents : (%, PositiveInteger) -> %
- from UnivariatePowerSeriesCategory(Coef, Fraction(Integer))
- nthRoot : (%, Integer) -> % if Coef has Algebra(Fraction(Integer))
- from RadicalCategory
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : % -> Fraction(Integer)
- from UnivariatePowerSeriesCategory(Coef, Fraction(Integer))
- order : (%, Fraction(Integer)) -> Fraction(Integer)
- from UnivariatePowerSeriesCategory(Coef, Fraction(Integer))
- pi : () -> % if Coef has Algebra(Fraction(Integer))
- from TranscendentalFunctionCategory
- plenaryPower : (%, PositiveInteger) -> % if Coef has Algebra(Fraction(Integer)) or Coef has CommutativeRing
- from NonAssociativeAlgebra(Coef)
- pole? : % -> Boolean
- from PowerSeriesCategory(Coef, Fraction(Integer), SingletonAsOrderedSet)
- prime? : % -> Boolean if Coef has Field
- from UniqueFactorizationDomain
- principalIdeal : List(%) -> Record(coef : List(%), generator : %) if Coef has Field
- from PrincipalIdealDomain
- puiseux : (Fraction(Integer), UnivariateLaurentSeries(Coef, var, cen)) -> %
- from UnivariatePuiseuxSeriesConstructorCategory(Coef, UnivariateLaurentSeries(Coef, var, cen))
- quo : (%, %) -> % if Coef has Field
- from EuclideanDomain
- rationalPower : % -> Fraction(Integer)
- from UnivariatePuiseuxSeriesConstructorCategory(Coef, UnivariateLaurentSeries(Coef, var, cen))
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reductum : % -> %
- from IndexedProductCategory(Coef, Fraction(Integer))
- rem : (%, %) -> % if Coef has Field
- from EuclideanDomain
- retract : % -> UnivariateLaurentSeries(Coef, var, cen)
- from RetractableTo(UnivariateLaurentSeries(Coef, var, cen))
- retract : % -> UnivariateTaylorSeries(Coef, var, cen)
- from RetractableTo(UnivariateTaylorSeries(Coef, var, cen))
- retractIfCan : % -> Union(UnivariateLaurentSeries(Coef, var, cen), "failed")
- from RetractableTo(UnivariateLaurentSeries(Coef, var, cen))
- retractIfCan : % -> Union(UnivariateTaylorSeries(Coef, var, cen), "failed")
- from RetractableTo(UnivariateTaylorSeries(Coef, var, cen))
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- sec : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- sech : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- series : (NonNegativeInteger, Stream(Record(k : Fraction(Integer), c : Coef))) -> %
- from UnivariatePuiseuxSeriesCategory(Coef)
- sin : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- sinh : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- sizeLess? : (%, %) -> Boolean if Coef has Field
- from EuclideanDomain
- sqrt : % -> % if Coef has Algebra(Fraction(Integer))
- from RadicalCategory
- squareFree : % -> Factored(%) if Coef has Field
- from UniqueFactorizationDomain
- squareFreePart : % -> % if Coef has Field
- from UniqueFactorizationDomain
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- tan : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- tanh : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- terms : % -> Stream(Record(k : Fraction(Integer), c : Coef))
- from UnivariatePowerSeriesCategory(Coef, Fraction(Integer))
- truncate : (%, Fraction(Integer)) -> %
- from UnivariatePowerSeriesCategory(Coef, Fraction(Integer))
- truncate : (%, Fraction(Integer), Fraction(Integer)) -> %
- from UnivariatePowerSeriesCategory(Coef, Fraction(Integer))
- unit? : % -> Boolean if Coef has IntegralDomain
- from EntireRing
- unitCanonical : % -> % if Coef has IntegralDomain
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if Coef has IntegralDomain
- from EntireRing
- variable : % -> Symbol
- from UnivariatePowerSeriesCategory(Coef, Fraction(Integer))
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Module(Fraction(Integer))
NonAssociativeAlgebra(Coef)
Module(Coef)
NonAssociativeSemiRing
BiModule(%, %)
RetractableTo(UnivariateTaylorSeries(Coef, var, cen))
Field
canonicalUnitNormal
Rng
ArcTrigonometricFunctionCategory
UnivariateSeriesWithRationalExponents(Coef, Fraction(Integer))
UnivariatePuiseuxSeriesConstructorCategory(Coef, UnivariateLaurentSeries(Coef, var, cen))
TwoSidedRecip
TranscendentalFunctionCategory
SemiRing
EntireRing
RightModule(Coef)
NonAssociativeAlgebra(Fraction(Integer))
CharacteristicNonZero
CoercibleFrom(UnivariateLaurentSeries(Coef, var, cen))
unitsKnown
RadicalCategory
UnivariatePowerSeriesCategory(Coef, Fraction(Integer))
NonAssociativeRng
AbelianProductCategory(Coef)
Magma
SemiGroup
GcdDomain
IntegralDomain
LeftModule(%)
NonAssociativeRing
AbelianMonoidRing(Coef, Fraction(Integer))
ArcHyperbolicFunctionCategory
PartialDifferentialRing(Symbol)
CharacteristicZero
UniqueFactorizationDomain
PowerSeriesCategory(Coef, Fraction(Integer), SingletonAsOrderedSet)
CommutativeRing
IndexedProductCategory(Coef, Fraction(Integer))
Algebra(%)
DifferentialRing
RightModule(Fraction(Integer))
Eltable(%, %)
MagmaWithUnit
RetractableTo(UnivariateLaurentSeries(Coef, var, cen))
PrincipalIdealDomain
NonAssociativeSemiRng
CancellationAbelianMonoid
EuclideanDomain
canonicalsClosed
VariablesCommuteWithCoefficients
CommutativeStar
AbelianMonoid
UnivariatePuiseuxSeriesCategory(Coef)
RightModule(%)
BiModule(Coef, Coef)
CoercibleFrom(UnivariateTaylorSeries(Coef, var, cen))
Module(%)
CoercibleTo(OutputForm)
Algebra(Coef)
SemiRng
Monoid
LeftOreRing
NonAssociativeAlgebra(%)
Algebra(Fraction(Integer))
DivisionRing
Ring
LeftModule(Fraction(Integer))
AbelianSemiGroup
noZeroDivisors
SetCategory
TrigonometricFunctionCategory
LeftModule(Coef)
BasicType
BiModule(Fraction(Integer), Fraction(Integer))
HyperbolicFunctionCategory
AbelianGroup
ElementaryFunctionCategory