UnivariateLaurentSeries(Coef, var, cen)

laurent.spad line 508 [edit on github]

Dense Laurent series in one variable UnivariateLaurentSeries is a domain representing Laurent series in one variable with coefficients in an arbitrary ring.The parameters of the type specify the coefficient ring, the power series variable, and the center of the power series expansion.For example, UnivariateLaurentSeries(Integer, x, 3) represents Laurent series in (x - 3) with integer coefficients.

* : (%, %) -> %
from Magma
* : (%, Coef) -> %
from RightModule(Coef)
* : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
from RightModule(Fraction(Integer))
* : (%, Integer) -> % if UnivariateTaylorSeries(Coef, var, cen) has LinearlyExplicitOver(Integer) and Coef has Field
from RightModule(Integer)
* : (%, UnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field
from RightModule(UnivariateTaylorSeries(Coef, var, cen))
* : (Coef, %) -> %
from LeftModule(Coef)
* : (Fraction(Integer), %) -> % if Coef has Algebra(Fraction(Integer))
from LeftModule(Fraction(Integer))
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
* : (UnivariateTaylorSeries(Coef, var, cen), %) -> % if Coef has Field
from LeftModule(UnivariateTaylorSeries(Coef, var, cen))
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, %) -> % if Coef has Field
from Field
/ : (%, Coef) -> % if Coef has Field
from AbelianMonoidRing(Coef, Integer)
/ : (UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field
from QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
< : (%, %) -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
from PartialOrder
<= : (%, %) -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
from PartialOrder
= : (%, %) -> Boolean
from BasicType
> : (%, %) -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
from PartialOrder
>= : (%, %) -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
from PartialOrder
D : % -> % if UnivariateTaylorSeries(Coef, var, cen) has DifferentialRing and Coef has Field or Coef has * : (Integer, Coef) -> Coef
from DifferentialRing
D : (%, List(Symbol)) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing(Symbol) and Coef has Field or Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
D : (%, List(Symbol), List(NonNegativeInteger)) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing(Symbol) and Coef has Field or Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
D : (%, Mapping(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen))) -> % if Coef has Field
from DifferentialExtension(UnivariateTaylorSeries(Coef, var, cen))
D : (%, Mapping(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen)), NonNegativeInteger) -> % if Coef has Field
from DifferentialExtension(UnivariateTaylorSeries(Coef, var, cen))
D : (%, NonNegativeInteger) -> % if UnivariateTaylorSeries(Coef, var, cen) has DifferentialRing and Coef has Field or Coef has * : (Integer, Coef) -> Coef
from DifferentialRing
D : (%, Symbol) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing(Symbol) and Coef has Field or Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
D : (%, Symbol, NonNegativeInteger) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing(Symbol) and Coef has Field or Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
^ : (%, %) -> % if Coef has Algebra(Fraction(Integer))
from ElementaryFunctionCategory
^ : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
from RadicalCategory
^ : (%, Integer) -> % if Coef has Field
from DivisionRing
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
abs : % -> % if UnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain and Coef has Field
from OrderedRing
acos : % -> % if Coef has Algebra(Fraction(Integer))
from ArcTrigonometricFunctionCategory
acosh : % -> % if Coef has Algebra(Fraction(Integer))
from ArcHyperbolicFunctionCategory
acot : % -> % if Coef has Algebra(Fraction(Integer))
from ArcTrigonometricFunctionCategory
acoth : % -> % if Coef has Algebra(Fraction(Integer))
from ArcHyperbolicFunctionCategory
acsc : % -> % if Coef has Algebra(Fraction(Integer))
from ArcTrigonometricFunctionCategory
acsch : % -> % if Coef has Algebra(Fraction(Integer))
from ArcHyperbolicFunctionCategory
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
approximate : (%, Integer) -> Coef if Coef has coerce : Symbol -> Coef and Coef has ^ : (Coef, Integer) -> Coef
from UnivariatePowerSeriesCategory(Coef, Integer)
asec : % -> % if Coef has Algebra(Fraction(Integer))
from ArcTrigonometricFunctionCategory
asech : % -> % if Coef has Algebra(Fraction(Integer))
from ArcHyperbolicFunctionCategory
asin : % -> % if Coef has Algebra(Fraction(Integer))
from ArcTrigonometricFunctionCategory
asinh : % -> % if Coef has Algebra(Fraction(Integer))
from ArcHyperbolicFunctionCategory
associates? : (%, %) -> Boolean if Coef has IntegralDomain
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
atan : % -> % if Coef has Algebra(Fraction(Integer))
from ArcTrigonometricFunctionCategory
atanh : % -> % if Coef has Algebra(Fraction(Integer))
from ArcHyperbolicFunctionCategory
ceiling : % -> UnivariateTaylorSeries(Coef, var, cen) if UnivariateTaylorSeries(Coef, var, cen) has IntegerNumberSystem and Coef has Field
from QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
center : % -> Coef
from UnivariatePowerSeriesCategory(Coef, Integer)
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
charthRoot : % -> Union(%, "failed") if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has CharacteristicNonZero or Coef has CharacteristicNonZero or % has CharacteristicNonZero and UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
from CharacteristicNonZero
coefficient : (%, Integer) -> Coef
from AbelianMonoidRing(Coef, Integer)
coerce : % -> % if Coef has CommutativeRing
from Algebra(%)
coerce : Coef -> % if Coef has CommutativeRing
from Algebra(Coef)
coerce : Fraction(Integer) -> % if Coef has Algebra(Fraction(Integer))
from CoercibleFrom(Fraction(Integer))
coerce : Integer -> %
from NonAssociativeRing
coerce : Symbol -> % if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo(Symbol) and Coef has Field
from CoercibleFrom(Symbol)
coerce : UnivariateTaylorSeries(Coef, var, cen) -> %
from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
coerce : Variable(var) -> %

coerce(var) converts the series variable var into a Laurent series.

coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
complete : % -> %
from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero and UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
from PolynomialFactorizationExplicit
construct : List(Record(k : Integer, c : Coef)) -> %
from IndexedProductCategory(Coef, Integer)
constructOrdered : List(Record(k : Integer, c : Coef)) -> %
from IndexedProductCategory(Coef, Integer)
convert : % -> DoubleFloat if UnivariateTaylorSeries(Coef, var, cen) has RealConstant and Coef has Field
from ConvertibleTo(DoubleFloat)
convert : % -> Float if UnivariateTaylorSeries(Coef, var, cen) has RealConstant and Coef has Field
from ConvertibleTo(Float)
convert : % -> InputForm if UnivariateTaylorSeries(Coef, var, cen) has ConvertibleTo(InputForm) and Coef has Field
from ConvertibleTo(InputForm)
convert : % -> Pattern(Float) if UnivariateTaylorSeries(Coef, var, cen) has ConvertibleTo(Pattern(Float)) and Coef has Field
from ConvertibleTo(Pattern(Float))
convert : % -> Pattern(Integer) if UnivariateTaylorSeries(Coef, var, cen) has ConvertibleTo(Pattern(Integer)) and Coef has Field
from ConvertibleTo(Pattern(Integer))
cos : % -> % if Coef has Algebra(Fraction(Integer))
from TrigonometricFunctionCategory
cosh : % -> % if Coef has Algebra(Fraction(Integer))
from HyperbolicFunctionCategory
cot : % -> % if Coef has Algebra(Fraction(Integer))
from TrigonometricFunctionCategory
coth : % -> % if Coef has Algebra(Fraction(Integer))
from HyperbolicFunctionCategory
csc : % -> % if Coef has Algebra(Fraction(Integer))
from TrigonometricFunctionCategory
csch : % -> % if Coef has Algebra(Fraction(Integer))
from HyperbolicFunctionCategory
degree : % -> Integer
from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
denom : % -> UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
from QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
denominator : % -> % if Coef has Field
from QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
differentiate : % -> % if UnivariateTaylorSeries(Coef, var, cen) has DifferentialRing and Coef has Field or Coef has * : (Integer, Coef) -> Coef
from DifferentialRing
differentiate : (%, List(Symbol)) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing(Symbol) and Coef has Field or Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing(Symbol) and Coef has Field or Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
differentiate : (%, Mapping(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen))) -> % if Coef has Field
from DifferentialExtension(UnivariateTaylorSeries(Coef, var, cen))
differentiate : (%, Mapping(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen)), NonNegativeInteger) -> % if Coef has Field
from DifferentialExtension(UnivariateTaylorSeries(Coef, var, cen))
differentiate : (%, NonNegativeInteger) -> % if UnivariateTaylorSeries(Coef, var, cen) has DifferentialRing and Coef has Field or Coef has * : (Integer, Coef) -> Coef
from DifferentialRing
differentiate : (%, Symbol) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing(Symbol) and Coef has Field or Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
differentiate : (%, Symbol, NonNegativeInteger) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing(Symbol) and Coef has Field or Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
differentiate : (%, Variable(var)) -> %

differentiate(f(x), x) returns the derivative of f(x) with respect to x.

divide : (%, %) -> Record(quotient : %, remainder : %) if Coef has Field
from EuclideanDomain
elt : (%, %) -> %
from Eltable(%, %)
elt : (%, UnivariateTaylorSeries(Coef, var, cen)) -> % if UnivariateTaylorSeries(Coef, var, cen) has Eltable(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen)) and Coef has Field
from Eltable(UnivariateTaylorSeries(Coef, var, cen), %)
elt : (%, Integer) -> Coef
from UnivariatePowerSeriesCategory(Coef, Integer)
euclideanSize : % -> NonNegativeInteger if Coef has Field
from EuclideanDomain
eval : (%, Equation(UnivariateTaylorSeries(Coef, var, cen))) -> % if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has Evalable(UnivariateTaylorSeries(Coef, var, cen))
from Evalable(UnivariateTaylorSeries(Coef, var, cen))
eval : (%, List(Equation(UnivariateTaylorSeries(Coef, var, cen)))) -> % if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has Evalable(UnivariateTaylorSeries(Coef, var, cen))
from Evalable(UnivariateTaylorSeries(Coef, var, cen))
eval : (%, List(Symbol), List(UnivariateTaylorSeries(Coef, var, cen))) -> % if UnivariateTaylorSeries(Coef, var, cen) has InnerEvalable(Symbol, UnivariateTaylorSeries(Coef, var, cen)) and Coef has Field
from InnerEvalable(Symbol, UnivariateTaylorSeries(Coef, var, cen))
eval : (%, List(UnivariateTaylorSeries(Coef, var, cen)), List(UnivariateTaylorSeries(Coef, var, cen))) -> % if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has Evalable(UnivariateTaylorSeries(Coef, var, cen))
from InnerEvalable(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen))
eval : (%, Symbol, UnivariateTaylorSeries(Coef, var, cen)) -> % if UnivariateTaylorSeries(Coef, var, cen) has InnerEvalable(Symbol, UnivariateTaylorSeries(Coef, var, cen)) and Coef has Field
from InnerEvalable(Symbol, UnivariateTaylorSeries(Coef, var, cen))
eval : (%, UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has Evalable(UnivariateTaylorSeries(Coef, var, cen))
from InnerEvalable(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen))
eval : (%, Coef) -> Stream(Coef) if Coef has ^ : (Coef, Integer) -> Coef
from UnivariatePowerSeriesCategory(Coef, Integer)
exp : % -> % if Coef has Algebra(Fraction(Integer))
from ElementaryFunctionCategory
expressIdealMember : (List(%), %) -> Union(List(%), "failed") if Coef has Field
from PrincipalIdealDomain
exquo : (%, %) -> Union(%, "failed") if Coef has IntegralDomain
from EntireRing
extend : (%, Integer) -> %
from UnivariatePowerSeriesCategory(Coef, Integer)
extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if Coef has Field
from EuclideanDomain
extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed") if Coef has Field
from EuclideanDomain
factor : % -> Factored(%) if Coef has Field
from UniqueFactorizationDomain
factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
from PolynomialFactorizationExplicit
factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
from PolynomialFactorizationExplicit
floor : % -> UnivariateTaylorSeries(Coef, var, cen) if UnivariateTaylorSeries(Coef, var, cen) has IntegerNumberSystem and Coef has Field
from QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
fractionPart : % -> % if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has EuclideanDomain
from QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
gcd : (%, %) -> % if Coef has Field
from GcdDomain
gcd : List(%) -> % if Coef has Field
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if Coef has Field
from PolynomialFactorizationExplicit
init : () -> % if UnivariateTaylorSeries(Coef, var, cen) has StepThrough and Coef has Field
from StepThrough
integrate : % -> % if Coef has Algebra(Fraction(Integer))
from UnivariateSeriesWithRationalExponents(Coef, Integer)
integrate : (%, Symbol) -> % if Coef has Algebra(Fraction(Integer)) and Coef has integrate : (Coef, Symbol) -> Coef and Coef has variables : Coef -> List(Symbol)
from UnivariateSeriesWithRationalExponents(Coef, Integer)
integrate : (%, Variable(var)) -> % if Coef has Algebra(Fraction(Integer))

integrate(f(x)) returns an anti-derivative of the power series f(x) with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.

inv : % -> % if Coef has Field
from DivisionRing
latex : % -> String
from SetCategory
laurent : (Integer, Stream(Coef)) -> %
from UnivariateLaurentSeriesCategory(Coef)
laurent : (Integer, UnivariateTaylorSeries(Coef, var, cen)) -> %
from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
lcm : (%, %) -> % if Coef has Field
from GcdDomain
lcm : List(%) -> % if Coef has Field
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if Coef has Field
from LeftOreRing
leadingCoefficient : % -> Coef
from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
leadingMonomial : % -> %
from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
leadingSupport : % -> Integer
from IndexedProductCategory(Coef, Integer)
leadingTerm : % -> Record(k : Integer, c : Coef)
from IndexedProductCategory(Coef, Integer)
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
log : % -> % if Coef has Algebra(Fraction(Integer))
from ElementaryFunctionCategory
map : (Mapping(Coef, Coef), %) -> %
from IndexedProductCategory(Coef, Integer)
map : (Mapping(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen)), %) -> % if Coef has Field
from FullyEvalableOver(UnivariateTaylorSeries(Coef, var, cen))
max : (%, %) -> % if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
from OrderedSet
min : (%, %) -> % if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
from OrderedSet
monomial : (Coef, Integer) -> %
from IndexedProductCategory(Coef, Integer)
monomial? : % -> Boolean
from IndexedProductCategory(Coef, Integer)
multiEuclidean : (List(%), %) -> Union(List(%), "failed") if Coef has Field
from EuclideanDomain
multiplyCoefficients : (Mapping(Coef, Integer), %) -> %
from UnivariateLaurentSeriesCategory(Coef)
multiplyExponents : (%, PositiveInteger) -> %
from UnivariatePowerSeriesCategory(Coef, Integer)
negative? : % -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain and Coef has Field
from OrderedRing
nextItem : % -> Union(%, "failed") if UnivariateTaylorSeries(Coef, var, cen) has StepThrough and Coef has Field
from StepThrough
nthRoot : (%, Integer) -> % if Coef has Algebra(Fraction(Integer))
from RadicalCategory
numer : % -> UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
from QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
numerator : % -> % if Coef has Field
from QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
order : % -> Integer
from UnivariatePowerSeriesCategory(Coef, Integer)
order : (%, Integer) -> Integer
from UnivariatePowerSeriesCategory(Coef, Integer)
patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if UnivariateTaylorSeries(Coef, var, cen) has PatternMatchable(Float) and Coef has Field
from PatternMatchable(Float)
patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if UnivariateTaylorSeries(Coef, var, cen) has PatternMatchable(Integer) and Coef has Field
from PatternMatchable(Integer)
pi : () -> % if Coef has Algebra(Fraction(Integer))
from TranscendentalFunctionCategory
plenaryPower : (%, PositiveInteger) -> % if Coef has CommutativeRing or Coef has Algebra(Fraction(Integer))
from NonAssociativeAlgebra(%)
pole? : % -> Boolean
from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
positive? : % -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain and Coef has Field
from OrderedRing
prime? : % -> Boolean if Coef has Field
from UniqueFactorizationDomain
principalIdeal : List(%) -> Record(coef : List(%), generator : %) if Coef has Field
from PrincipalIdealDomain
quo : (%, %) -> % if Coef has Field
from EuclideanDomain
rationalFunction : (%, Integer) -> Fraction(Polynomial(Coef)) if Coef has IntegralDomain
from UnivariateLaurentSeriesCategory(Coef)
rationalFunction : (%, Integer, Integer) -> Fraction(Polynomial(Coef)) if Coef has IntegralDomain
from UnivariateLaurentSeriesCategory(Coef)
recip : % -> Union(%, "failed")
from MagmaWithUnit
reducedSystem : Matrix(%) -> Matrix(Integer) if UnivariateTaylorSeries(Coef, var, cen) has LinearlyExplicitOver(Integer) and Coef has Field
from LinearlyExplicitOver(Integer)
reducedSystem : Matrix(%) -> Matrix(UnivariateTaylorSeries(Coef, var, cen)) if Coef has Field
from LinearlyExplicitOver(UnivariateTaylorSeries(Coef, var, cen))
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if UnivariateTaylorSeries(Coef, var, cen) has LinearlyExplicitOver(Integer) and Coef has Field
from LinearlyExplicitOver(Integer)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(UnivariateTaylorSeries(Coef, var, cen)), vec : Vector(UnivariateTaylorSeries(Coef, var, cen))) if Coef has Field
from LinearlyExplicitOver(UnivariateTaylorSeries(Coef, var, cen))
reductum : % -> %
from IndexedProductCategory(Coef, Integer)
rem : (%, %) -> % if Coef has Field
from EuclideanDomain
removeZeroes : % -> %
from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
removeZeroes : (Integer, %) -> %
from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
retract : % -> Fraction(Integer) if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo(Integer) and Coef has Field
from RetractableTo(Fraction(Integer))
retract : % -> Integer if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo(Integer) and Coef has Field
from RetractableTo(Integer)
retract : % -> Symbol if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo(Symbol) and Coef has Field
from RetractableTo(Symbol)
retract : % -> UnivariateTaylorSeries(Coef, var, cen)
from RetractableTo(UnivariateTaylorSeries(Coef, var, cen))
retractIfCan : % -> Union(Fraction(Integer), "failed") if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo(Integer) and Coef has Field
from RetractableTo(Fraction(Integer))
retractIfCan : % -> Union(Integer, "failed") if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo(Integer) and Coef has Field
from RetractableTo(Integer)
retractIfCan : % -> Union(Symbol, "failed") if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo(Symbol) and Coef has Field
from RetractableTo(Symbol)
retractIfCan : % -> Union(UnivariateTaylorSeries(Coef, var, cen), "failed")
from RetractableTo(UnivariateTaylorSeries(Coef, var, cen))
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
sec : % -> % if Coef has Algebra(Fraction(Integer))
from TrigonometricFunctionCategory
sech : % -> % if Coef has Algebra(Fraction(Integer))
from HyperbolicFunctionCategory
series : Stream(Record(k : Integer, c : Coef)) -> %
from UnivariateLaurentSeriesCategory(Coef)
sign : % -> Integer if UnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain and Coef has Field
from OrderedRing
sin : % -> % if Coef has Algebra(Fraction(Integer))
from TrigonometricFunctionCategory
sinh : % -> % if Coef has Algebra(Fraction(Integer))
from HyperbolicFunctionCategory
sizeLess? : (%, %) -> Boolean if Coef has Field
from EuclideanDomain
smaller? : (%, %) -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has Comparable and Coef has Field
from Comparable
solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
from PolynomialFactorizationExplicit
sqrt : % -> % if Coef has Algebra(Fraction(Integer))
from RadicalCategory
squareFree : % -> Factored(%) if Coef has Field
from UniqueFactorizationDomain
squareFreePart : % -> % if Coef has Field
from UniqueFactorizationDomain
squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
from PolynomialFactorizationExplicit
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
tan : % -> % if Coef has Algebra(Fraction(Integer))
from TrigonometricFunctionCategory
tanh : % -> % if Coef has Algebra(Fraction(Integer))
from HyperbolicFunctionCategory
taylor : % -> UnivariateTaylorSeries(Coef, var, cen)
from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
taylorIfCan : % -> Union(UnivariateTaylorSeries(Coef, var, cen), "failed")
from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
taylorRep : % -> UnivariateTaylorSeries(Coef, var, cen)
from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
terms : % -> Stream(Record(k : Integer, c : Coef))
from UnivariatePowerSeriesCategory(Coef, Integer)
truncate : (%, Integer) -> %
from UnivariatePowerSeriesCategory(Coef, Integer)
truncate : (%, Integer, Integer) -> %
from UnivariatePowerSeriesCategory(Coef, Integer)
unit? : % -> Boolean if Coef has IntegralDomain
from EntireRing
unitCanonical : % -> % if Coef has IntegralDomain
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %) if Coef has IntegralDomain
from EntireRing
variable : % -> Symbol
from UnivariatePowerSeriesCategory(Coef, Integer)
wholePart : % -> UnivariateTaylorSeries(Coef, var, cen) if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has EuclideanDomain
from QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

EntireRing

Ring

Algebra(%)

Eltable(%, %)

CancellationAbelianMonoid

CommutativeStar

ConvertibleTo(Pattern(Float))

UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))

UnivariateSeriesWithRationalExponents(Coef, Integer)

LinearlyExplicitOver(Integer)

SemiGroup

OrderedSet

UnivariateLaurentSeriesCategory(Coef)

ConvertibleTo(Float)

VariablesCommuteWithCoefficients

ConvertibleTo(DoubleFloat)

ArcTrigonometricFunctionCategory

PartialOrder

UnivariatePowerSeriesCategory(Coef, Integer)

NonAssociativeAlgebra(Coef)

Monoid

OrderedAbelianSemiGroup

LeftModule(%)

BiModule(Fraction(Integer), Fraction(Integer))

FullyLinearlyExplicitOver(UnivariateTaylorSeries(Coef, var, cen))

TrigonometricFunctionCategory

Module(%)

TranscendentalFunctionCategory

Module(UnivariateTaylorSeries(Coef, var, cen))

LeftOreRing

NonAssociativeSemiRing

noZeroDivisors

Evalable(UnivariateTaylorSeries(Coef, var, cen))

ConvertibleTo(InputForm)

Rng

SemiRing

NonAssociativeAlgebra(%)

SetCategory

CharacteristicNonZero

RetractableTo(UnivariateTaylorSeries(Coef, var, cen))

IndexedProductCategory(Coef, Integer)

PolynomialFactorizationExplicit

Eltable(UnivariateTaylorSeries(Coef, var, cen), %)

EuclideanDomain

CoercibleFrom(Fraction(Integer))

NonAssociativeRing

RealConstant

CoercibleFrom(Symbol)

LeftModule(UnivariateTaylorSeries(Coef, var, cen))

NonAssociativeRng

Module(Coef)

Algebra(Coef)

Comparable

PrincipalIdealDomain

canonicalsClosed

DivisionRing

BiModule(Coef, Coef)

FullyEvalableOver(UnivariateTaylorSeries(Coef, var, cen))

ArcHyperbolicFunctionCategory

ElementaryFunctionCategory

unitsKnown

AbelianSemiGroup

canonicalUnitNormal

LeftModule(Fraction(Integer))

PatternMatchable(Float)

AbelianProductCategory(Coef)

IntegralDomain

RightModule(Integer)

NonAssociativeAlgebra(Fraction(Integer))

FullyPatternMatchable(UnivariateTaylorSeries(Coef, var, cen))

Algebra(UnivariateTaylorSeries(Coef, var, cen))

NonAssociativeSemiRng

GcdDomain

CharacteristicZero

NonAssociativeAlgebra(UnivariateTaylorSeries(Coef, var, cen))

PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)

LinearlyExplicitOver(UnivariateTaylorSeries(Coef, var, cen))

Patternable(UnivariateTaylorSeries(Coef, var, cen))

CommutativeRing

PartialDifferentialRing(Symbol)

QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))

Algebra(Fraction(Integer))

HyperbolicFunctionCategory

AbelianGroup

Field

OrderedRing

DifferentialRing

BasicType

BiModule(%, %)

InnerEvalable(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen))

TwoSidedRecip

MagmaWithUnit

InnerEvalable(Symbol, UnivariateTaylorSeries(Coef, var, cen))

RadicalCategory

LeftModule(Coef)

CoercibleFrom(Integer)

AbelianMonoid

PatternMatchable(Integer)

DifferentialExtension(UnivariateTaylorSeries(Coef, var, cen))

CoercibleTo(OutputForm)

RightModule(UnivariateTaylorSeries(Coef, var, cen))

RetractableTo(Fraction(Integer))

StepThrough

CoercibleFrom(UnivariateTaylorSeries(Coef, var, cen))

OrderedCancellationAbelianMonoid

SemiRng

RetractableTo(Symbol)

RightModule(Coef)

RightModule(Fraction(Integer))

OrderedAbelianMonoid

OrderedAbelianGroup

BiModule(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen))

UniqueFactorizationDomain

OrderedIntegralDomain

ConvertibleTo(Pattern(Integer))

Module(Fraction(Integer))

AbelianMonoidRing(Coef, Integer)

RightModule(%)

RetractableTo(Integer)

Magma