UnivariateLaurentSeries(Coef, var, cen)
laurent.spad line 508
[edit on github]
Dense Laurent series in one variable UnivariateLaurentSeries is a domain representing Laurent series in one variable with coefficients in an arbitrary ring.The parameters of the type specify the coefficient ring, the power series variable, and the center of the power series expansion.For example, UnivariateLaurentSeries(Integer, x, 3)
represents Laurent series in (x - 3)
with integer coefficients.
- * : (%, %) -> %
- from Magma
- * : (%, Coef) -> %
- from RightModule(Coef)
- * : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if UnivariateTaylorSeries(Coef, var, cen) has LinearlyExplicitOver(Integer) and Coef has Field
- from RightModule(Integer)
- * : (%, UnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field
- from RightModule(UnivariateTaylorSeries(Coef, var, cen))
- * : (Coef, %) -> %
- from LeftModule(Coef)
- * : (Fraction(Integer), %) -> % if Coef has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- * : (UnivariateTaylorSeries(Coef, var, cen), %) -> % if Coef has Field
- from LeftModule(UnivariateTaylorSeries(Coef, var, cen))
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> % if Coef has Field
- from Field
- / : (%, Coef) -> % if Coef has Field
- from AbelianMonoidRing(Coef, Integer)
- / : (UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field
- from QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- < : (%, %) -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
- from PartialOrder
- <= : (%, %) -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
- from PartialOrder
- >= : (%, %) -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
- from PartialOrder
- D : % -> % if UnivariateTaylorSeries(Coef, var, cen) has DifferentialRing and Coef has Field or Coef has * : (Integer, Coef) -> Coef
- from DifferentialRing
- D : (%, List(Symbol)) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing(Symbol) and Coef has Field or Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing(Symbol) and Coef has Field or Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, Mapping(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen))) -> % if Coef has Field
- from DifferentialExtension(UnivariateTaylorSeries(Coef, var, cen))
- D : (%, Mapping(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen)), NonNegativeInteger) -> % if Coef has Field
- from DifferentialExtension(UnivariateTaylorSeries(Coef, var, cen))
- D : (%, NonNegativeInteger) -> % if UnivariateTaylorSeries(Coef, var, cen) has DifferentialRing and Coef has Field or Coef has * : (Integer, Coef) -> Coef
- from DifferentialRing
- D : (%, Symbol) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing(Symbol) and Coef has Field or Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing(Symbol) and Coef has Field or Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- ^ : (%, %) -> % if Coef has Algebra(Fraction(Integer))
- from ElementaryFunctionCategory
- ^ : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
- from RadicalCategory
- ^ : (%, Integer) -> % if Coef has Field
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- abs : % -> % if UnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain and Coef has Field
- from OrderedRing
- acos : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- acosh : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- acot : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- acoth : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- acsc : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- acsch : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- approximate : (%, Integer) -> Coef if Coef has coerce : Symbol -> Coef and Coef has ^ : (Coef, Integer) -> Coef
- from UnivariatePowerSeriesCategory(Coef, Integer)
- asec : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- asech : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- asin : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- asinh : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- associates? : (%, %) -> Boolean if Coef has IntegralDomain
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- atan : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- atanh : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- ceiling : % -> UnivariateTaylorSeries(Coef, var, cen) if UnivariateTaylorSeries(Coef, var, cen) has IntegerNumberSystem and Coef has Field
- from QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
- center : % -> Coef
- from UnivariatePowerSeriesCategory(Coef, Integer)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has CharacteristicNonZero or Coef has CharacteristicNonZero or % has CharacteristicNonZero and UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
- from CharacteristicNonZero
- coefficient : (%, Integer) -> Coef
- from AbelianMonoidRing(Coef, Integer)
- coerce : % -> % if Coef has CommutativeRing
- from Algebra(%)
- coerce : Coef -> % if Coef has CommutativeRing
- from Algebra(Coef)
- coerce : Fraction(Integer) -> % if Coef has Algebra(Fraction(Integer))
- from CoercibleFrom(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : Symbol -> % if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo(Symbol) and Coef has Field
- from CoercibleFrom(Symbol)
- coerce : UnivariateTaylorSeries(Coef, var, cen) -> %
- from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
- coerce : Variable(var) -> %
coerce(var)
converts the series variable var
into a Laurent series.
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- complete : % -> %
- from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
- conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero and UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
- from PolynomialFactorizationExplicit
- construct : List(Record(k : Integer, c : Coef)) -> %
- from IndexedProductCategory(Coef, Integer)
- constructOrdered : List(Record(k : Integer, c : Coef)) -> %
- from IndexedProductCategory(Coef, Integer)
- convert : % -> DoubleFloat if UnivariateTaylorSeries(Coef, var, cen) has RealConstant and Coef has Field
- from ConvertibleTo(DoubleFloat)
- convert : % -> Float if UnivariateTaylorSeries(Coef, var, cen) has RealConstant and Coef has Field
- from ConvertibleTo(Float)
- convert : % -> InputForm if UnivariateTaylorSeries(Coef, var, cen) has ConvertibleTo(InputForm) and Coef has Field
- from ConvertibleTo(InputForm)
- convert : % -> Pattern(Float) if UnivariateTaylorSeries(Coef, var, cen) has ConvertibleTo(Pattern(Float)) and Coef has Field
- from ConvertibleTo(Pattern(Float))
- convert : % -> Pattern(Integer) if UnivariateTaylorSeries(Coef, var, cen) has ConvertibleTo(Pattern(Integer)) and Coef has Field
- from ConvertibleTo(Pattern(Integer))
- cos : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- cosh : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- cot : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- coth : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- csc : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- csch : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- degree : % -> Integer
- from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
- denom : % -> UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
- from QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
- denominator : % -> % if Coef has Field
- from QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
- differentiate : % -> % if UnivariateTaylorSeries(Coef, var, cen) has DifferentialRing and Coef has Field or Coef has * : (Integer, Coef) -> Coef
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing(Symbol) and Coef has Field or Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing(Symbol) and Coef has Field or Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Mapping(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen))) -> % if Coef has Field
- from DifferentialExtension(UnivariateTaylorSeries(Coef, var, cen))
- differentiate : (%, Mapping(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen)), NonNegativeInteger) -> % if Coef has Field
- from DifferentialExtension(UnivariateTaylorSeries(Coef, var, cen))
- differentiate : (%, NonNegativeInteger) -> % if UnivariateTaylorSeries(Coef, var, cen) has DifferentialRing and Coef has Field or Coef has * : (Integer, Coef) -> Coef
- from DifferentialRing
- differentiate : (%, Symbol) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing(Symbol) and Coef has Field or Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if UnivariateTaylorSeries(Coef, var, cen) has PartialDifferentialRing(Symbol) and Coef has Field or Coef has * : (Integer, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Variable(var)) -> %
differentiate(f(x), x)
returns the derivative of f(x)
with respect to x
.
- divide : (%, %) -> Record(quotient : %, remainder : %) if Coef has Field
- from EuclideanDomain
- elt : (%, %) -> %
- from Eltable(%, %)
- elt : (%, UnivariateTaylorSeries(Coef, var, cen)) -> % if UnivariateTaylorSeries(Coef, var, cen) has Eltable(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen)) and Coef has Field
- from Eltable(UnivariateTaylorSeries(Coef, var, cen), %)
- elt : (%, Integer) -> Coef
- from UnivariatePowerSeriesCategory(Coef, Integer)
- euclideanSize : % -> NonNegativeInteger if Coef has Field
- from EuclideanDomain
- eval : (%, Equation(UnivariateTaylorSeries(Coef, var, cen))) -> % if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has Evalable(UnivariateTaylorSeries(Coef, var, cen))
- from Evalable(UnivariateTaylorSeries(Coef, var, cen))
- eval : (%, List(Equation(UnivariateTaylorSeries(Coef, var, cen)))) -> % if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has Evalable(UnivariateTaylorSeries(Coef, var, cen))
- from Evalable(UnivariateTaylorSeries(Coef, var, cen))
- eval : (%, List(Symbol), List(UnivariateTaylorSeries(Coef, var, cen))) -> % if UnivariateTaylorSeries(Coef, var, cen) has InnerEvalable(Symbol, UnivariateTaylorSeries(Coef, var, cen)) and Coef has Field
- from InnerEvalable(Symbol, UnivariateTaylorSeries(Coef, var, cen))
- eval : (%, List(UnivariateTaylorSeries(Coef, var, cen)), List(UnivariateTaylorSeries(Coef, var, cen))) -> % if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has Evalable(UnivariateTaylorSeries(Coef, var, cen))
- from InnerEvalable(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen))
- eval : (%, Symbol, UnivariateTaylorSeries(Coef, var, cen)) -> % if UnivariateTaylorSeries(Coef, var, cen) has InnerEvalable(Symbol, UnivariateTaylorSeries(Coef, var, cen)) and Coef has Field
- from InnerEvalable(Symbol, UnivariateTaylorSeries(Coef, var, cen))
- eval : (%, UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen)) -> % if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has Evalable(UnivariateTaylorSeries(Coef, var, cen))
- from InnerEvalable(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen))
- eval : (%, Coef) -> Stream(Coef) if Coef has ^ : (Coef, Integer) -> Coef
- from UnivariatePowerSeriesCategory(Coef, Integer)
- exp : % -> % if Coef has Algebra(Fraction(Integer))
- from ElementaryFunctionCategory
- expressIdealMember : (List(%), %) -> Union(List(%), "failed") if Coef has Field
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed") if Coef has IntegralDomain
- from EntireRing
- extend : (%, Integer) -> %
- from UnivariatePowerSeriesCategory(Coef, Integer)
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if Coef has Field
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed") if Coef has Field
- from EuclideanDomain
- factor : % -> Factored(%) if Coef has Field
- from UniqueFactorizationDomain
- factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
- from PolynomialFactorizationExplicit
- factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
- from PolynomialFactorizationExplicit
- floor : % -> UnivariateTaylorSeries(Coef, var, cen) if UnivariateTaylorSeries(Coef, var, cen) has IntegerNumberSystem and Coef has Field
- from QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
- fractionPart : % -> % if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has EuclideanDomain
- from QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
- gcd : (%, %) -> % if Coef has Field
- from GcdDomain
- gcd : List(%) -> % if Coef has Field
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if Coef has Field
- from PolynomialFactorizationExplicit
- init : () -> % if UnivariateTaylorSeries(Coef, var, cen) has StepThrough and Coef has Field
- from StepThrough
- integrate : % -> % if Coef has Algebra(Fraction(Integer))
- from UnivariateSeriesWithRationalExponents(Coef, Integer)
- integrate : (%, Symbol) -> % if Coef has Algebra(Fraction(Integer)) and Coef has integrate : (Coef, Symbol) -> Coef and Coef has variables : Coef -> List(Symbol)
- from UnivariateSeriesWithRationalExponents(Coef, Integer)
- integrate : (%, Variable(var)) -> % if Coef has Algebra(Fraction(Integer))
integrate(f(x))
returns an anti-derivative of the power series f(x)
with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.
- inv : % -> % if Coef has Field
- from DivisionRing
- latex : % -> String
- from SetCategory
- laurent : (Integer, Stream(Coef)) -> %
- from UnivariateLaurentSeriesCategory(Coef)
- laurent : (Integer, UnivariateTaylorSeries(Coef, var, cen)) -> %
- from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
- lcm : (%, %) -> % if Coef has Field
- from GcdDomain
- lcm : List(%) -> % if Coef has Field
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if Coef has Field
- from LeftOreRing
- leadingCoefficient : % -> Coef
- from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
- leadingMonomial : % -> %
- from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
- leadingSupport : % -> Integer
- from IndexedProductCategory(Coef, Integer)
- leadingTerm : % -> Record(k : Integer, c : Coef)
- from IndexedProductCategory(Coef, Integer)
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- log : % -> % if Coef has Algebra(Fraction(Integer))
- from ElementaryFunctionCategory
- map : (Mapping(Coef, Coef), %) -> %
- from IndexedProductCategory(Coef, Integer)
- map : (Mapping(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen)), %) -> % if Coef has Field
- from FullyEvalableOver(UnivariateTaylorSeries(Coef, var, cen))
- max : (%, %) -> % if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
- from OrderedSet
- min : (%, %) -> % if UnivariateTaylorSeries(Coef, var, cen) has OrderedSet and Coef has Field
- from OrderedSet
- monomial : (Coef, Integer) -> %
- from IndexedProductCategory(Coef, Integer)
- monomial? : % -> Boolean
- from IndexedProductCategory(Coef, Integer)
- multiEuclidean : (List(%), %) -> Union(List(%), "failed") if Coef has Field
- from EuclideanDomain
- multiplyCoefficients : (Mapping(Coef, Integer), %) -> %
- from UnivariateLaurentSeriesCategory(Coef)
- multiplyExponents : (%, PositiveInteger) -> %
- from UnivariatePowerSeriesCategory(Coef, Integer)
- negative? : % -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain and Coef has Field
- from OrderedRing
- nextItem : % -> Union(%, "failed") if UnivariateTaylorSeries(Coef, var, cen) has StepThrough and Coef has Field
- from StepThrough
- nthRoot : (%, Integer) -> % if Coef has Algebra(Fraction(Integer))
- from RadicalCategory
- numer : % -> UnivariateTaylorSeries(Coef, var, cen) if Coef has Field
- from QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
- numerator : % -> % if Coef has Field
- from QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : % -> Integer
- from UnivariatePowerSeriesCategory(Coef, Integer)
- order : (%, Integer) -> Integer
- from UnivariatePowerSeriesCategory(Coef, Integer)
- patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if UnivariateTaylorSeries(Coef, var, cen) has PatternMatchable(Float) and Coef has Field
- from PatternMatchable(Float)
- patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if UnivariateTaylorSeries(Coef, var, cen) has PatternMatchable(Integer) and Coef has Field
- from PatternMatchable(Integer)
- pi : () -> % if Coef has Algebra(Fraction(Integer))
- from TranscendentalFunctionCategory
- plenaryPower : (%, PositiveInteger) -> % if Coef has CommutativeRing or Coef has Algebra(Fraction(Integer))
- from NonAssociativeAlgebra(%)
- pole? : % -> Boolean
- from PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
- positive? : % -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain and Coef has Field
- from OrderedRing
- prime? : % -> Boolean if Coef has Field
- from UniqueFactorizationDomain
- principalIdeal : List(%) -> Record(coef : List(%), generator : %) if Coef has Field
- from PrincipalIdealDomain
- quo : (%, %) -> % if Coef has Field
- from EuclideanDomain
- rationalFunction : (%, Integer) -> Fraction(Polynomial(Coef)) if Coef has IntegralDomain
- from UnivariateLaurentSeriesCategory(Coef)
- rationalFunction : (%, Integer, Integer) -> Fraction(Polynomial(Coef)) if Coef has IntegralDomain
- from UnivariateLaurentSeriesCategory(Coef)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reducedSystem : Matrix(%) -> Matrix(Integer) if UnivariateTaylorSeries(Coef, var, cen) has LinearlyExplicitOver(Integer) and Coef has Field
- from LinearlyExplicitOver(Integer)
- reducedSystem : Matrix(%) -> Matrix(UnivariateTaylorSeries(Coef, var, cen)) if Coef has Field
- from LinearlyExplicitOver(UnivariateTaylorSeries(Coef, var, cen))
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if UnivariateTaylorSeries(Coef, var, cen) has LinearlyExplicitOver(Integer) and Coef has Field
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(UnivariateTaylorSeries(Coef, var, cen)), vec : Vector(UnivariateTaylorSeries(Coef, var, cen))) if Coef has Field
- from LinearlyExplicitOver(UnivariateTaylorSeries(Coef, var, cen))
- reductum : % -> %
- from IndexedProductCategory(Coef, Integer)
- rem : (%, %) -> % if Coef has Field
- from EuclideanDomain
- removeZeroes : % -> %
- from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
- removeZeroes : (Integer, %) -> %
- from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
- retract : % -> Fraction(Integer) if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo(Integer) and Coef has Field
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo(Integer) and Coef has Field
- from RetractableTo(Integer)
- retract : % -> Symbol if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo(Symbol) and Coef has Field
- from RetractableTo(Symbol)
- retract : % -> UnivariateTaylorSeries(Coef, var, cen)
- from RetractableTo(UnivariateTaylorSeries(Coef, var, cen))
- retractIfCan : % -> Union(Fraction(Integer), "failed") if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo(Integer) and Coef has Field
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo(Integer) and Coef has Field
- from RetractableTo(Integer)
- retractIfCan : % -> Union(Symbol, "failed") if UnivariateTaylorSeries(Coef, var, cen) has RetractableTo(Symbol) and Coef has Field
- from RetractableTo(Symbol)
- retractIfCan : % -> Union(UnivariateTaylorSeries(Coef, var, cen), "failed")
- from RetractableTo(UnivariateTaylorSeries(Coef, var, cen))
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- sec : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- sech : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- series : Stream(Record(k : Integer, c : Coef)) -> %
- from UnivariateLaurentSeriesCategory(Coef)
- sign : % -> Integer if UnivariateTaylorSeries(Coef, var, cen) has OrderedIntegralDomain and Coef has Field
- from OrderedRing
- sin : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- sinh : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- sizeLess? : (%, %) -> Boolean if Coef has Field
- from EuclideanDomain
- smaller? : (%, %) -> Boolean if UnivariateTaylorSeries(Coef, var, cen) has Comparable and Coef has Field
- from Comparable
- solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
- from PolynomialFactorizationExplicit
- sqrt : % -> % if Coef has Algebra(Fraction(Integer))
- from RadicalCategory
- squareFree : % -> Factored(%) if Coef has Field
- from UniqueFactorizationDomain
- squareFreePart : % -> % if Coef has Field
- from UniqueFactorizationDomain
- squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if UnivariateTaylorSeries(Coef, var, cen) has PolynomialFactorizationExplicit and Coef has Field
- from PolynomialFactorizationExplicit
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- tan : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- tanh : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- taylor : % -> UnivariateTaylorSeries(Coef, var, cen)
- from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
- taylorIfCan : % -> Union(UnivariateTaylorSeries(Coef, var, cen), "failed")
- from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
- taylorRep : % -> UnivariateTaylorSeries(Coef, var, cen)
- from UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
- terms : % -> Stream(Record(k : Integer, c : Coef))
- from UnivariatePowerSeriesCategory(Coef, Integer)
- truncate : (%, Integer) -> %
- from UnivariatePowerSeriesCategory(Coef, Integer)
- truncate : (%, Integer, Integer) -> %
- from UnivariatePowerSeriesCategory(Coef, Integer)
- unit? : % -> Boolean if Coef has IntegralDomain
- from EntireRing
- unitCanonical : % -> % if Coef has IntegralDomain
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if Coef has IntegralDomain
- from EntireRing
- variable : % -> Symbol
- from UnivariatePowerSeriesCategory(Coef, Integer)
- wholePart : % -> UnivariateTaylorSeries(Coef, var, cen) if Coef has Field and UnivariateTaylorSeries(Coef, var, cen) has EuclideanDomain
- from QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
EntireRing
Ring
Algebra(%)
Eltable(%, %)
CancellationAbelianMonoid
CommutativeStar
ConvertibleTo(Pattern(Float))
UnivariateLaurentSeriesConstructorCategory(Coef, UnivariateTaylorSeries(Coef, var, cen))
UnivariateSeriesWithRationalExponents(Coef, Integer)
LinearlyExplicitOver(Integer)
SemiGroup
OrderedSet
UnivariateLaurentSeriesCategory(Coef)
ConvertibleTo(Float)
VariablesCommuteWithCoefficients
ConvertibleTo(DoubleFloat)
ArcTrigonometricFunctionCategory
PartialOrder
UnivariatePowerSeriesCategory(Coef, Integer)
NonAssociativeAlgebra(Coef)
Monoid
OrderedAbelianSemiGroup
LeftModule(%)
BiModule(Fraction(Integer), Fraction(Integer))
FullyLinearlyExplicitOver(UnivariateTaylorSeries(Coef, var, cen))
TrigonometricFunctionCategory
Module(%)
TranscendentalFunctionCategory
Module(UnivariateTaylorSeries(Coef, var, cen))
LeftOreRing
NonAssociativeSemiRing
noZeroDivisors
Evalable(UnivariateTaylorSeries(Coef, var, cen))
ConvertibleTo(InputForm)
Rng
SemiRing
NonAssociativeAlgebra(%)
SetCategory
CharacteristicNonZero
RetractableTo(UnivariateTaylorSeries(Coef, var, cen))
IndexedProductCategory(Coef, Integer)
PolynomialFactorizationExplicit
Eltable(UnivariateTaylorSeries(Coef, var, cen), %)
EuclideanDomain
CoercibleFrom(Fraction(Integer))
NonAssociativeRing
RealConstant
CoercibleFrom(Symbol)
LeftModule(UnivariateTaylorSeries(Coef, var, cen))
NonAssociativeRng
Module(Coef)
Algebra(Coef)
Comparable
PrincipalIdealDomain
canonicalsClosed
DivisionRing
BiModule(Coef, Coef)
FullyEvalableOver(UnivariateTaylorSeries(Coef, var, cen))
ArcHyperbolicFunctionCategory
ElementaryFunctionCategory
unitsKnown
AbelianSemiGroup
canonicalUnitNormal
LeftModule(Fraction(Integer))
PatternMatchable(Float)
AbelianProductCategory(Coef)
IntegralDomain
RightModule(Integer)
NonAssociativeAlgebra(Fraction(Integer))
FullyPatternMatchable(UnivariateTaylorSeries(Coef, var, cen))
Algebra(UnivariateTaylorSeries(Coef, var, cen))
NonAssociativeSemiRng
GcdDomain
CharacteristicZero
NonAssociativeAlgebra(UnivariateTaylorSeries(Coef, var, cen))
PowerSeriesCategory(Coef, Integer, SingletonAsOrderedSet)
LinearlyExplicitOver(UnivariateTaylorSeries(Coef, var, cen))
Patternable(UnivariateTaylorSeries(Coef, var, cen))
CommutativeRing
PartialDifferentialRing(Symbol)
QuotientFieldCategory(UnivariateTaylorSeries(Coef, var, cen))
Algebra(Fraction(Integer))
HyperbolicFunctionCategory
AbelianGroup
Field
OrderedRing
DifferentialRing
BasicType
BiModule(%, %)
InnerEvalable(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen))
TwoSidedRecip
MagmaWithUnit
InnerEvalable(Symbol, UnivariateTaylorSeries(Coef, var, cen))
RadicalCategory
LeftModule(Coef)
CoercibleFrom(Integer)
AbelianMonoid
PatternMatchable(Integer)
DifferentialExtension(UnivariateTaylorSeries(Coef, var, cen))
CoercibleTo(OutputForm)
RightModule(UnivariateTaylorSeries(Coef, var, cen))
RetractableTo(Fraction(Integer))
StepThrough
CoercibleFrom(UnivariateTaylorSeries(Coef, var, cen))
OrderedCancellationAbelianMonoid
SemiRng
RetractableTo(Symbol)
RightModule(Coef)
RightModule(Fraction(Integer))
OrderedAbelianMonoid
OrderedAbelianGroup
BiModule(UnivariateTaylorSeries(Coef, var, cen), UnivariateTaylorSeries(Coef, var, cen))
UniqueFactorizationDomain
OrderedIntegralDomain
ConvertibleTo(Pattern(Integer))
Module(Fraction(Integer))
AbelianMonoidRing(Coef, Integer)
RightModule(%)
RetractableTo(Integer)
Magma