ExponentialOfUnivariatePuiseuxSeries(FE, var, cen)
expexpan.spad line 1
[edit on github]
ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form exp(f(x))
, where f(x)
is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity, with functions which tend more rapidly to zero or infinity considered to be larger. Thus, if order(f(x)) < order(g(x))
, i.e. the first non-zero term of f(x)
has lower degree than the first non-zero term of g(x)
, then exp(f(x)) > exp(g(x))
. If order(f(x)) = order(g(x))
, then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.
- * : (%, %) -> %
- from Magma
- * : (%, FE) -> %
- from RightModule(FE)
- * : (%, Fraction(Integer)) -> %
- from RightModule(Fraction(Integer))
- * : (FE, %) -> %
- from LeftModule(FE)
- * : (Fraction(Integer), %) -> %
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> %
- from Field
- / : (%, FE) -> %
- from AbelianMonoidRing(FE, Fraction(Integer))
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- < : (%, %) -> Boolean
- from PartialOrder
- <= : (%, %) -> Boolean
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean
- from PartialOrder
- >= : (%, %) -> Boolean
- from PartialOrder
- D : % -> % if FE has * : (Fraction(Integer), FE) -> FE
- from DifferentialRing
- D : (%, List(Symbol)) -> % if FE has * : (Fraction(Integer), FE) -> FE and FE has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if FE has * : (Fraction(Integer), FE) -> FE and FE has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, NonNegativeInteger) -> % if FE has * : (Fraction(Integer), FE) -> FE
- from DifferentialRing
- D : (%, Symbol) -> % if FE has * : (Fraction(Integer), FE) -> FE and FE has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if FE has * : (Fraction(Integer), FE) -> FE and FE has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- ^ : (%, %) -> %
- from ElementaryFunctionCategory
- ^ : (%, Fraction(Integer)) -> %
- from RadicalCategory
- ^ : (%, Integer) -> %
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- acos : % -> %
- from ArcTrigonometricFunctionCategory
- acosh : % -> %
- from ArcHyperbolicFunctionCategory
- acot : % -> %
- from ArcTrigonometricFunctionCategory
- acoth : % -> %
- from ArcHyperbolicFunctionCategory
- acsc : % -> %
- from ArcTrigonometricFunctionCategory
- acsch : % -> %
- from ArcHyperbolicFunctionCategory
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- approximate : (%, Fraction(Integer)) -> FE if FE has coerce : Symbol -> FE and FE has ^ : (FE, Fraction(Integer)) -> FE
- from UnivariatePowerSeriesCategory(FE, Fraction(Integer))
- asec : % -> %
- from ArcTrigonometricFunctionCategory
- asech : % -> %
- from ArcHyperbolicFunctionCategory
- asin : % -> %
- from ArcTrigonometricFunctionCategory
- asinh : % -> %
- from ArcHyperbolicFunctionCategory
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- atan : % -> %
- from ArcTrigonometricFunctionCategory
- atanh : % -> %
- from ArcHyperbolicFunctionCategory
- center : % -> FE
- from UnivariatePowerSeriesCategory(FE, Fraction(Integer))
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if FE has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, Fraction(Integer)) -> FE
- from AbelianMonoidRing(FE, Fraction(Integer))
- coerce : % -> %
- from Algebra(%)
- coerce : FE -> %
- from Algebra(FE)
- coerce : Fraction(Integer) -> %
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- complete : % -> %
- from PowerSeriesCategory(FE, Fraction(Integer), SingletonAsOrderedSet)
- construct : List(Record(k : Fraction(Integer), c : FE)) -> %
- from IndexedProductCategory(FE, Fraction(Integer))
- constructOrdered : List(Record(k : Fraction(Integer), c : FE)) -> %
- from IndexedProductCategory(FE, Fraction(Integer))
- cos : % -> %
- from TrigonometricFunctionCategory
- cosh : % -> %
- from HyperbolicFunctionCategory
- cot : % -> %
- from TrigonometricFunctionCategory
- coth : % -> %
- from HyperbolicFunctionCategory
- csc : % -> %
- from TrigonometricFunctionCategory
- csch : % -> %
- from HyperbolicFunctionCategory
- degree : % -> Fraction(Integer)
- from PowerSeriesCategory(FE, Fraction(Integer), SingletonAsOrderedSet)
- differentiate : % -> % if FE has * : (Fraction(Integer), FE) -> FE
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> % if FE has * : (Fraction(Integer), FE) -> FE and FE has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if FE has * : (Fraction(Integer), FE) -> FE and FE has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, NonNegativeInteger) -> % if FE has * : (Fraction(Integer), FE) -> FE
- from DifferentialRing
- differentiate : (%, Symbol) -> % if FE has * : (Fraction(Integer), FE) -> FE and FE has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if FE has * : (Fraction(Integer), FE) -> FE and FE has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- divide : (%, %) -> Record(quotient : %, remainder : %)
- from EuclideanDomain
- elt : (%, %) -> %
- from Eltable(%, %)
- elt : (%, Fraction(Integer)) -> FE
- from UnivariatePowerSeriesCategory(FE, Fraction(Integer))
- euclideanSize : % -> NonNegativeInteger
- from EuclideanDomain
- eval : (%, FE) -> Stream(FE) if FE has ^ : (FE, Fraction(Integer)) -> FE
- from UnivariatePowerSeriesCategory(FE, Fraction(Integer))
- exp : % -> %
- from ElementaryFunctionCategory
- exponent : % -> UnivariatePuiseuxSeries(FE, var, cen)
exponent(exp(f(x)))
returns f(x)
- exponential : UnivariatePuiseuxSeries(FE, var, cen) -> %
exponential(f(x))
returns exp(f(x))
. Note: the function does NOT check that f(x)
has no non-negative terms.
- exponentialOrder : % -> Fraction(Integer)
exponentialOrder(exp(c * x ^(-n) + ...))
returns -n
. exponentialOrder(0) returns 0
.
- expressIdealMember : (List(%), %) -> Union(List(%), "failed")
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extend : (%, Fraction(Integer)) -> %
- from UnivariatePowerSeriesCategory(FE, Fraction(Integer))
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
- from EuclideanDomain
- factor : % -> Factored(%)
- from UniqueFactorizationDomain
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from GcdDomain
- integrate : % -> %
- from UnivariateSeriesWithRationalExponents(FE, Fraction(Integer))
- integrate : (%, Symbol) -> % if FE has integrate : (FE, Symbol) -> FE and FE has variables : FE -> List(Symbol)
- from UnivariateSeriesWithRationalExponents(FE, Fraction(Integer))
- inv : % -> %
- from DivisionRing
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leadingCoefficient : % -> FE
- from PowerSeriesCategory(FE, Fraction(Integer), SingletonAsOrderedSet)
- leadingMonomial : % -> %
- from PowerSeriesCategory(FE, Fraction(Integer), SingletonAsOrderedSet)
- leadingSupport : % -> Fraction(Integer)
- from IndexedProductCategory(FE, Fraction(Integer))
- leadingTerm : % -> Record(k : Fraction(Integer), c : FE)
- from IndexedProductCategory(FE, Fraction(Integer))
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- log : % -> %
- from ElementaryFunctionCategory
- map : (Mapping(FE, FE), %) -> %
- from IndexedProductCategory(FE, Fraction(Integer))
- max : (%, %) -> %
- from OrderedSet
- min : (%, %) -> %
- from OrderedSet
- monomial : (FE, Fraction(Integer)) -> %
- from IndexedProductCategory(FE, Fraction(Integer))
- monomial? : % -> Boolean
- from IndexedProductCategory(FE, Fraction(Integer))
- multiEuclidean : (List(%), %) -> Union(List(%), "failed")
- from EuclideanDomain
- multiplyExponents : (%, Fraction(Integer)) -> %
- from UnivariatePuiseuxSeriesCategory(FE)
- multiplyExponents : (%, PositiveInteger) -> %
- from UnivariatePowerSeriesCategory(FE, Fraction(Integer))
- nthRoot : (%, Integer) -> %
- from RadicalCategory
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : % -> Fraction(Integer)
- from UnivariatePowerSeriesCategory(FE, Fraction(Integer))
- order : (%, Fraction(Integer)) -> Fraction(Integer)
- from UnivariatePowerSeriesCategory(FE, Fraction(Integer))
- pi : () -> %
- from TranscendentalFunctionCategory
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- pole? : % -> Boolean
- from PowerSeriesCategory(FE, Fraction(Integer), SingletonAsOrderedSet)
- prime? : % -> Boolean
- from UniqueFactorizationDomain
- principalIdeal : List(%) -> Record(coef : List(%), generator : %)
- from PrincipalIdealDomain
- quo : (%, %) -> %
- from EuclideanDomain
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reductum : % -> %
- from IndexedProductCategory(FE, Fraction(Integer))
- rem : (%, %) -> %
- from EuclideanDomain
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- sec : % -> %
- from TrigonometricFunctionCategory
- sech : % -> %
- from HyperbolicFunctionCategory
- series : (NonNegativeInteger, Stream(Record(k : Fraction(Integer), c : FE))) -> %
- from UnivariatePuiseuxSeriesCategory(FE)
- sin : % -> %
- from TrigonometricFunctionCategory
- sinh : % -> %
- from HyperbolicFunctionCategory
- sizeLess? : (%, %) -> Boolean
- from EuclideanDomain
- smaller? : (%, %) -> Boolean
- from Comparable
- sqrt : % -> %
- from RadicalCategory
- squareFree : % -> Factored(%)
- from UniqueFactorizationDomain
- squareFreePart : % -> %
- from UniqueFactorizationDomain
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- tan : % -> %
- from TrigonometricFunctionCategory
- tanh : % -> %
- from HyperbolicFunctionCategory
- terms : % -> Stream(Record(k : Fraction(Integer), c : FE))
- from UnivariatePowerSeriesCategory(FE, Fraction(Integer))
- truncate : (%, Fraction(Integer)) -> %
- from UnivariatePowerSeriesCategory(FE, Fraction(Integer))
- truncate : (%, Fraction(Integer), Fraction(Integer)) -> %
- from UnivariatePowerSeriesCategory(FE, Fraction(Integer))
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- variable : % -> Symbol
- from UnivariatePowerSeriesCategory(FE, Fraction(Integer))
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Algebra(Fraction(Integer))
Module(Fraction(Integer))
PrincipalIdealDomain
PartialOrder
OrderedAbelianSemiGroup
NonAssociativeSemiRing
BiModule(%, %)
Field
canonicalUnitNormal
Rng
NonAssociativeAlgebra(FE)
ArcTrigonometricFunctionCategory
UnivariateSeriesWithRationalExponents(FE, Fraction(Integer))
TwoSidedRecip
TranscendentalFunctionCategory
SemiRing
EntireRing
AbelianMonoidRing(FE, Fraction(Integer))
NonAssociativeAlgebra(Fraction(Integer))
CharacteristicNonZero
unitsKnown
RadicalCategory
Algebra(FE)
noZeroDivisors
Magma
SemiGroup
UnivariatePuiseuxSeriesCategory(FE)
GcdDomain
IntegralDomain
LeftModule(%)
NonAssociativeRing
Module(FE)
ArcHyperbolicFunctionCategory
NonAssociativeAlgebra(%)
PartialDifferentialRing(Symbol)
CharacteristicZero
BasicType
UniqueFactorizationDomain
Algebra(%)
CommutativeRing
DifferentialRing
OrderedAbelianMonoid
Eltable(%, %)
RightModule(FE)
NonAssociativeSemiRng
CancellationAbelianMonoid
EuclideanDomain
canonicalsClosed
Comparable
VariablesCommuteWithCoefficients
SetCategory
OrderedSet
CommutativeStar
AbelianMonoid
ElementaryFunctionCategory
RightModule(%)
IndexedProductCategory(FE, Fraction(Integer))
LeftModule(FE)
BiModule(FE, FE)
Module(%)
CoercibleTo(OutputForm)
RightModule(Fraction(Integer))
PowerSeriesCategory(FE, Fraction(Integer), SingletonAsOrderedSet)
UnivariatePowerSeriesCategory(FE, Fraction(Integer))
SemiRng
Monoid
LeftOreRing
AbelianProductCategory(FE)
DivisionRing
MagmaWithUnit
Ring
LeftModule(Fraction(Integer))
AbelianSemiGroup
TrigonometricFunctionCategory
NonAssociativeRng
BiModule(Fraction(Integer), Fraction(Integer))
HyperbolicFunctionCategory
AbelianGroup