FiniteFieldExtensionByPolynomial(GF, defpol)

ffdoms.spad line 1316 [edit on github]

FiniteFieldExtensionByPolynomial(GF, defpol) implements the extension of the finite field GF generated by the extension polynomial defpol which MUST be irreducible. Note: the user has the responsibility to ensure that defpol is irreducible.

* : (%, %) -> %
from Magma
* : (%, GF) -> %
from RightModule(GF)
* : (%, Fraction(Integer)) -> %
from RightModule(Fraction(Integer))
* : (GF, %) -> %
from LeftModule(GF)
* : (Fraction(Integer), %) -> %
from LeftModule(Fraction(Integer))
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, %) -> %
from Field
/ : (%, GF) -> %
from ExtensionField(GF)
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
D : % -> %
from DifferentialRing
D : (%, NonNegativeInteger) -> %
from DifferentialRing
Frobenius : % -> %
from ExtensionField(GF)
Frobenius : (%, NonNegativeInteger) -> %
from ExtensionField(GF)
^ : (%, Integer) -> %
from DivisionRing
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
algebraic? : % -> Boolean
from ExtensionField(GF)
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
basis : () -> Vector(%)
from FramedModule(GF)
basis : PositiveInteger -> Vector(%)
from FiniteAlgebraicExtensionField(GF)
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
characteristicPolynomial : % -> SparseUnivariatePolynomial(GF)
from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
charthRoot : % -> %
from FiniteFieldCategory
charthRoot : % -> Union(%, "failed")
from CharacteristicNonZero
coerce : % -> %
from Algebra(%)
coerce : GF -> %
from CoercibleFrom(GF)
coerce : Fraction(Integer) -> %
from Algebra(Fraction(Integer))
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
conditionP : Matrix(%) -> Union(Vector(%), "failed")
from PolynomialFactorizationExplicit
convert : Vector(GF) -> %
from FramedModule(GF)
convert : % -> InputForm
from ConvertibleTo(InputForm)
convert : % -> Vector(GF)
from FramedModule(GF)
coordinates : Vector(%) -> Matrix(GF)
from FramedModule(GF)
coordinates : (Vector(%), Vector(%)) -> Matrix(GF)
from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
coordinates : % -> Vector(GF)
from FramedModule(GF)
coordinates : (%, Vector(%)) -> Vector(GF)
from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
createNormalElement : () -> %
from FiniteAlgebraicExtensionField(GF)
createPrimitiveElement : () -> %
from FiniteFieldCategory
definingPolynomial : () -> SparseUnivariatePolynomial(GF)
from FiniteAlgebraicExtensionField(GF)
degree : % -> OnePointCompletion(PositiveInteger)
from ExtensionField(GF)
degree : % -> PositiveInteger
from FiniteAlgebraicExtensionField(GF)
differentiate : % -> %
from DifferentialRing
differentiate : (%, NonNegativeInteger) -> %
from DifferentialRing
discreteLog : % -> NonNegativeInteger
from FiniteFieldCategory
discreteLog : (%, %) -> Union(NonNegativeInteger, "failed")
from FieldOfPrimeCharacteristic
discriminant : () -> GF
from FramedAlgebra(GF, SparseUnivariatePolynomial(GF))
discriminant : Vector(%) -> GF
from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
divide : (%, %) -> Record(quotient : %, remainder : %)
from EuclideanDomain
enumerate : () -> List(%)
from Finite
euclideanSize : % -> NonNegativeInteger
from EuclideanDomain
expressIdealMember : (List(%), %) -> Union(List(%), "failed")
from PrincipalIdealDomain
exquo : (%, %) -> Union(%, "failed")
from EntireRing
extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
from EuclideanDomain
extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
from EuclideanDomain
extensionDegree : () -> OnePointCompletion(PositiveInteger)
from ExtensionField(GF)
extensionDegree : () -> PositiveInteger
from FiniteAlgebraicExtensionField(GF)
factor : % -> Factored(%)
from UniqueFactorizationDomain
factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%))
from PolynomialFactorizationExplicit
factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%))
from PolynomialFactorizationExplicit
factorsOfCyclicGroupSize : () -> List(Record(factor : Integer, exponent : NonNegativeInteger))
from FiniteFieldCategory
gcd : (%, %) -> %
from GcdDomain
gcd : List(%) -> %
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
from GcdDomain
generator : () -> %
from FiniteAlgebraicExtensionField(GF)
hash : % -> SingleInteger
from Hashable
hashUpdate! : (HashState, %) -> HashState
from Hashable
inGroundField? : % -> Boolean
from ExtensionField(GF)
index : PositiveInteger -> %
from Finite
init : () -> %
from StepThrough
inv : % -> %
from DivisionRing
latex : % -> String
from SetCategory
lcm : (%, %) -> %
from GcdDomain
lcm : List(%) -> %
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
from LeftOreRing
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
linearAssociatedExp : (%, SparseUnivariatePolynomial(GF)) -> %
from FiniteAlgebraicExtensionField(GF)
linearAssociatedLog : % -> SparseUnivariatePolynomial(GF)
from FiniteAlgebraicExtensionField(GF)
linearAssociatedLog : (%, %) -> Union(SparseUnivariatePolynomial(GF), "failed")
from FiniteAlgebraicExtensionField(GF)
linearAssociatedOrder : % -> SparseUnivariatePolynomial(GF)
from FiniteAlgebraicExtensionField(GF)
lookup : % -> PositiveInteger
from Finite
minimalPolynomial : (%, PositiveInteger) -> SparseUnivariatePolynomial(%)
from FiniteAlgebraicExtensionField(GF)
minimalPolynomial : % -> SparseUnivariatePolynomial(GF)
from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
multiEuclidean : (List(%), %) -> Union(List(%), "failed")
from EuclideanDomain
nextItem : % -> Union(%, "failed")
from StepThrough
norm : (%, PositiveInteger) -> %
from FiniteAlgebraicExtensionField(GF)
norm : % -> GF
from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
normal? : % -> Boolean
from FiniteAlgebraicExtensionField(GF)
normalElement : () -> %
from FiniteAlgebraicExtensionField(GF)
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
order : % -> OnePointCompletion(PositiveInteger)
from FieldOfPrimeCharacteristic
order : % -> PositiveInteger
from FiniteFieldCategory
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
prime? : % -> Boolean
from UniqueFactorizationDomain
primeFrobenius : % -> %
from FieldOfPrimeCharacteristic
primeFrobenius : (%, NonNegativeInteger) -> %
from FieldOfPrimeCharacteristic
primitive? : % -> Boolean
from FiniteFieldCategory
primitiveElement : () -> %
from FiniteFieldCategory
principalIdeal : List(%) -> Record(coef : List(%), generator : %)
from PrincipalIdealDomain
quo : (%, %) -> %
from EuclideanDomain
random : () -> %
from Finite
rank : () -> PositiveInteger
from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
recip : % -> Union(%, "failed")
from MagmaWithUnit
regularRepresentation : % -> Matrix(GF)
from FramedAlgebra(GF, SparseUnivariatePolynomial(GF))
regularRepresentation : (%, Vector(%)) -> Matrix(GF)
from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
rem : (%, %) -> %
from EuclideanDomain
representationType : () -> Union("prime", "polynomial", "normal", "cyclic")
from FiniteFieldCategory
represents : Vector(GF) -> %
from FramedModule(GF)
represents : (Vector(GF), Vector(%)) -> %
from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
retract : % -> GF
from RetractableTo(GF)
retractIfCan : % -> Union(GF, "failed")
from RetractableTo(GF)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
size : () -> NonNegativeInteger
from Finite
sizeLess? : (%, %) -> Boolean
from EuclideanDomain
smaller? : (%, %) -> Boolean
from Comparable
solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed")
from PolynomialFactorizationExplicit
squareFree : % -> Factored(%)
from UniqueFactorizationDomain
squareFreePart : % -> %
from UniqueFactorizationDomain
squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%))
from PolynomialFactorizationExplicit
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
tableForDiscreteLogarithm : Integer -> Table(PositiveInteger, NonNegativeInteger)
from FiniteFieldCategory
trace : (%, PositiveInteger) -> %
from FiniteAlgebraicExtensionField(GF)
trace : % -> GF
from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
traceMatrix : () -> Matrix(GF)
from FramedAlgebra(GF, SparseUnivariatePolynomial(GF))
traceMatrix : Vector(%) -> Matrix(GF)
from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
transcendenceDegree : () -> NonNegativeInteger
from ExtensionField(GF)
transcendent? : % -> Boolean
from ExtensionField(GF)
unit? : % -> Boolean
from EntireRing
unitCanonical : % -> %
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %)
from EntireRing
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

Module(Fraction(Integer))

PrincipalIdealDomain

Algebra(GF)

NonAssociativeSemiRing

BiModule(%, %)

ConvertibleTo(InputForm)

Field

canonicalUnitNormal

Rng

AbelianMonoid

LeftModule(GF)

TwoSidedRecip

SemiRing

EntireRing

NonAssociativeAlgebra(Fraction(Integer))

CharacteristicNonZero

unitsKnown

FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))

RightModule(GF)

noZeroDivisors

RightModule(%)

UniqueFactorizationDomain

SemiGroup

RightModule(Fraction(Integer))

Magma

LeftModule(%)

NonAssociativeRing

GcdDomain

CharacteristicZero

Algebra(%)

CommutativeRing

Ring

DifferentialRing

DivisionRing

Module(GF)

IntegralDomain

NonAssociativeSemiRng

CancellationAbelianMonoid

EuclideanDomain

canonicalsClosed

CommutativeStar

MagmaWithUnit

Comparable

Hashable

BiModule(GF, GF)

Module(%)

CoercibleTo(OutputForm)

NonAssociativeAlgebra(GF)

Finite

SemiRng

FramedAlgebra(GF, SparseUnivariatePolynomial(GF))

RetractableTo(GF)

Monoid

PolynomialFactorizationExplicit

FiniteFieldCategory

CoercibleFrom(GF)

LeftOreRing

NonAssociativeAlgebra(%)

Algebra(Fraction(Integer))

BasicType

LeftModule(Fraction(Integer))

FramedModule(GF)

SetCategory

ExtensionField(GF)

FiniteAlgebraicExtensionField(GF)

NonAssociativeRng

FieldOfPrimeCharacteristic

BiModule(Fraction(Integer), Fraction(Integer))

StepThrough

AbelianGroup

AbelianSemiGroup