FiniteFieldExtensionByPolynomial(GF, defpol)
ffdoms.spad line 1316
[edit on github]
FiniteFieldExtensionByPolynomial(GF
, defpol) implements the extension of the finite field GF generated by the extension polynomial defpol which MUST be irreducible. Note: the user has the responsibility to ensure that defpol is irreducible.
- * : (%, %) -> %
- from Magma
- * : (%, GF) -> %
- from RightModule(GF)
- * : (%, Fraction(Integer)) -> %
- from RightModule(Fraction(Integer))
- * : (GF, %) -> %
- from LeftModule(GF)
- * : (Fraction(Integer), %) -> %
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> %
- from Field
- / : (%, GF) -> %
- from ExtensionField(GF)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : % -> %
- from DifferentialRing
- D : (%, NonNegativeInteger) -> %
- from DifferentialRing
- Frobenius : % -> %
- from ExtensionField(GF)
- Frobenius : (%, NonNegativeInteger) -> %
- from ExtensionField(GF)
- ^ : (%, Integer) -> %
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- algebraic? : % -> Boolean
- from ExtensionField(GF)
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- basis : () -> Vector(%)
- from FramedModule(GF)
- basis : PositiveInteger -> Vector(%)
- from FiniteAlgebraicExtensionField(GF)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- characteristicPolynomial : % -> SparseUnivariatePolynomial(GF)
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
- charthRoot : % -> %
- from FiniteFieldCategory
- charthRoot : % -> Union(%, "failed")
- from CharacteristicNonZero
- coerce : % -> %
- from Algebra(%)
- coerce : GF -> %
- from CoercibleFrom(GF)
- coerce : Fraction(Integer) -> %
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- conditionP : Matrix(%) -> Union(Vector(%), "failed")
- from PolynomialFactorizationExplicit
- convert : Vector(GF) -> %
- from FramedModule(GF)
- convert : % -> InputForm
- from ConvertibleTo(InputForm)
- convert : % -> Vector(GF)
- from FramedModule(GF)
- coordinates : Vector(%) -> Matrix(GF)
- from FramedModule(GF)
- coordinates : (Vector(%), Vector(%)) -> Matrix(GF)
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
- coordinates : % -> Vector(GF)
- from FramedModule(GF)
- coordinates : (%, Vector(%)) -> Vector(GF)
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
- createNormalElement : () -> %
- from FiniteAlgebraicExtensionField(GF)
- createPrimitiveElement : () -> %
- from FiniteFieldCategory
- definingPolynomial : () -> SparseUnivariatePolynomial(GF)
- from FiniteAlgebraicExtensionField(GF)
- degree : % -> OnePointCompletion(PositiveInteger)
- from ExtensionField(GF)
- degree : % -> PositiveInteger
- from FiniteAlgebraicExtensionField(GF)
- differentiate : % -> %
- from DifferentialRing
- differentiate : (%, NonNegativeInteger) -> %
- from DifferentialRing
- discreteLog : % -> NonNegativeInteger
- from FiniteFieldCategory
- discreteLog : (%, %) -> Union(NonNegativeInteger, "failed")
- from FieldOfPrimeCharacteristic
- discriminant : () -> GF
- from FramedAlgebra(GF, SparseUnivariatePolynomial(GF))
- discriminant : Vector(%) -> GF
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
- divide : (%, %) -> Record(quotient : %, remainder : %)
- from EuclideanDomain
- enumerate : () -> List(%)
- from Finite
- euclideanSize : % -> NonNegativeInteger
- from EuclideanDomain
- expressIdealMember : (List(%), %) -> Union(List(%), "failed")
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
- from EuclideanDomain
- extensionDegree : () -> OnePointCompletion(PositiveInteger)
- from ExtensionField(GF)
- extensionDegree : () -> PositiveInteger
- from FiniteAlgebraicExtensionField(GF)
- factor : % -> Factored(%)
- from UniqueFactorizationDomain
- factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%))
- from PolynomialFactorizationExplicit
- factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%))
- from PolynomialFactorizationExplicit
- factorsOfCyclicGroupSize : () -> List(Record(factor : Integer, exponent : NonNegativeInteger))
- from FiniteFieldCategory
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from GcdDomain
- generator : () -> %
- from FiniteAlgebraicExtensionField(GF)
- hash : % -> SingleInteger
- from Hashable
- hashUpdate! : (HashState, %) -> HashState
- from Hashable
- inGroundField? : % -> Boolean
- from ExtensionField(GF)
- index : PositiveInteger -> %
- from Finite
- init : () -> %
- from StepThrough
- inv : % -> %
- from DivisionRing
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- linearAssociatedExp : (%, SparseUnivariatePolynomial(GF)) -> %
- from FiniteAlgebraicExtensionField(GF)
- linearAssociatedLog : % -> SparseUnivariatePolynomial(GF)
- from FiniteAlgebraicExtensionField(GF)
- linearAssociatedLog : (%, %) -> Union(SparseUnivariatePolynomial(GF), "failed")
- from FiniteAlgebraicExtensionField(GF)
- linearAssociatedOrder : % -> SparseUnivariatePolynomial(GF)
- from FiniteAlgebraicExtensionField(GF)
- lookup : % -> PositiveInteger
- from Finite
- minimalPolynomial : (%, PositiveInteger) -> SparseUnivariatePolynomial(%)
- from FiniteAlgebraicExtensionField(GF)
- minimalPolynomial : % -> SparseUnivariatePolynomial(GF)
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
- multiEuclidean : (List(%), %) -> Union(List(%), "failed")
- from EuclideanDomain
- nextItem : % -> Union(%, "failed")
- from StepThrough
- norm : (%, PositiveInteger) -> %
- from FiniteAlgebraicExtensionField(GF)
- norm : % -> GF
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
- normal? : % -> Boolean
- from FiniteAlgebraicExtensionField(GF)
- normalElement : () -> %
- from FiniteAlgebraicExtensionField(GF)
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : % -> OnePointCompletion(PositiveInteger)
- from FieldOfPrimeCharacteristic
- order : % -> PositiveInteger
- from FiniteFieldCategory
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- prime? : % -> Boolean
- from UniqueFactorizationDomain
- primeFrobenius : % -> %
- from FieldOfPrimeCharacteristic
- primeFrobenius : (%, NonNegativeInteger) -> %
- from FieldOfPrimeCharacteristic
- primitive? : % -> Boolean
- from FiniteFieldCategory
- primitiveElement : () -> %
- from FiniteFieldCategory
- principalIdeal : List(%) -> Record(coef : List(%), generator : %)
- from PrincipalIdealDomain
- quo : (%, %) -> %
- from EuclideanDomain
- random : () -> %
- from Finite
- rank : () -> PositiveInteger
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- regularRepresentation : % -> Matrix(GF)
- from FramedAlgebra(GF, SparseUnivariatePolynomial(GF))
- regularRepresentation : (%, Vector(%)) -> Matrix(GF)
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
- rem : (%, %) -> %
- from EuclideanDomain
- representationType : () -> Union("prime", "polynomial", "normal", "cyclic")
- from FiniteFieldCategory
- represents : Vector(GF) -> %
- from FramedModule(GF)
- represents : (Vector(GF), Vector(%)) -> %
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
- retract : % -> GF
- from RetractableTo(GF)
- retractIfCan : % -> Union(GF, "failed")
- from RetractableTo(GF)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- size : () -> NonNegativeInteger
- from Finite
- sizeLess? : (%, %) -> Boolean
- from EuclideanDomain
- smaller? : (%, %) -> Boolean
- from Comparable
- solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed")
- from PolynomialFactorizationExplicit
- squareFree : % -> Factored(%)
- from UniqueFactorizationDomain
- squareFreePart : % -> %
- from UniqueFactorizationDomain
- squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%))
- from PolynomialFactorizationExplicit
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- tableForDiscreteLogarithm : Integer -> Table(PositiveInteger, NonNegativeInteger)
- from FiniteFieldCategory
- trace : (%, PositiveInteger) -> %
- from FiniteAlgebraicExtensionField(GF)
- trace : % -> GF
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
- traceMatrix : () -> Matrix(GF)
- from FramedAlgebra(GF, SparseUnivariatePolynomial(GF))
- traceMatrix : Vector(%) -> Matrix(GF)
- from FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
- transcendenceDegree : () -> NonNegativeInteger
- from ExtensionField(GF)
- transcendent? : % -> Boolean
- from ExtensionField(GF)
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Module(Fraction(Integer))
PrincipalIdealDomain
Algebra(GF)
NonAssociativeSemiRing
BiModule(%, %)
ConvertibleTo(InputForm)
Field
canonicalUnitNormal
Rng
AbelianMonoid
LeftModule(GF)
TwoSidedRecip
SemiRing
EntireRing
NonAssociativeAlgebra(Fraction(Integer))
CharacteristicNonZero
unitsKnown
FiniteRankAlgebra(GF, SparseUnivariatePolynomial(GF))
RightModule(GF)
noZeroDivisors
RightModule(%)
UniqueFactorizationDomain
SemiGroup
RightModule(Fraction(Integer))
Magma
LeftModule(%)
NonAssociativeRing
GcdDomain
CharacteristicZero
Algebra(%)
CommutativeRing
Ring
DifferentialRing
DivisionRing
Module(GF)
IntegralDomain
NonAssociativeSemiRng
CancellationAbelianMonoid
EuclideanDomain
canonicalsClosed
CommutativeStar
MagmaWithUnit
Comparable
Hashable
BiModule(GF, GF)
Module(%)
CoercibleTo(OutputForm)
NonAssociativeAlgebra(GF)
Finite
SemiRng
FramedAlgebra(GF, SparseUnivariatePolynomial(GF))
RetractableTo(GF)
Monoid
PolynomialFactorizationExplicit
FiniteFieldCategory
CoercibleFrom(GF)
LeftOreRing
NonAssociativeAlgebra(%)
Algebra(Fraction(Integer))
BasicType
LeftModule(Fraction(Integer))
FramedModule(GF)
SetCategory
ExtensionField(GF)
FiniteAlgebraicExtensionField(GF)
NonAssociativeRng
FieldOfPrimeCharacteristic
BiModule(Fraction(Integer), Fraction(Integer))
StepThrough
AbelianGroup
AbelianSemiGroup