MachineFloat

fortmac.spad line 51 [edit on github]

A domain which models the floating point representation used by machines in the AXIOM-NAG link.

* : (%, %) -> %
from Magma
* : (%, Fraction(Integer)) -> %
from RightModule(Fraction(Integer))
* : (Fraction(Integer), %) -> %
from LeftModule(Fraction(Integer))
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, %) -> %
from Field
/ : (%, Integer) -> %
from FloatingPointSystem
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
< : (%, %) -> Boolean
from PartialOrder
<= : (%, %) -> Boolean
from PartialOrder
= : (%, %) -> Boolean
from BasicType
> : (%, %) -> Boolean
from PartialOrder
>= : (%, %) -> Boolean
from PartialOrder
^ : (%, Fraction(Integer)) -> %
from RadicalCategory
^ : (%, Integer) -> %
from DivisionRing
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
abs : % -> %
from OrderedRing
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
base : () -> PositiveInteger

base() returns the base of the model

base : PositiveInteger -> PositiveInteger

base(b) sets the base of the model to b

bits : () -> PositiveInteger
from FloatingPointSystem
ceiling : % -> %
from RealNumberSystem
changeBase : (Integer, Integer, PositiveInteger) -> %

changeBase(exp, man, base) is undocumented

characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : % -> %
from Algebra(%)
coerce : Float -> %
from CoercibleFrom(Float)
coerce : Fraction(Integer) -> %
from Algebra(Fraction(Integer))
coerce : Integer -> %
from NonAssociativeRing
coerce : MachineInteger -> %

coerce(u) transforms a MachineInteger into a MachineFloat

coerce : % -> Float

coerce(u) transforms a MachineFloat to a standard Float

coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
convert : % -> DoubleFloat
from ConvertibleTo(DoubleFloat)
convert : % -> Float
from ConvertibleTo(Float)
convert : % -> Pattern(Float)
from ConvertibleTo(Pattern(Float))
convert : % -> String
from ConvertibleTo(String)
digits : () -> PositiveInteger
from FloatingPointSystem
divide : (%, %) -> Record(quotient : %, remainder : %)
from EuclideanDomain
euclideanSize : % -> NonNegativeInteger
from EuclideanDomain
exponent : % -> Integer

exponent(u) returns the exponent of u

expressIdealMember : (List(%), %) -> Union(List(%), "failed")
from PrincipalIdealDomain
exquo : (%, %) -> Union(%, "failed")
from EntireRing
extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
from EuclideanDomain
extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
from EuclideanDomain
factor : % -> Factored(%)
from UniqueFactorizationDomain
float : (Integer, Integer) -> %
from FloatingPointSystem
float : (Integer, Integer, PositiveInteger) -> %
from FloatingPointSystem
floor : % -> %
from RealNumberSystem
fractionPart : % -> %
from RealNumberSystem
gcd : (%, %) -> %
from GcdDomain
gcd : List(%) -> %
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
from GcdDomain
inv : % -> %
from DivisionRing
latex : % -> String
from SetCategory
lcm : (%, %) -> %
from GcdDomain
lcm : List(%) -> %
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
from LeftOreRing
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
mantissa : % -> Integer

mantissa(u) returns the mantissa of u

max : () -> % if % hasn't arbitraryExponent and % hasn't arbitraryPrecision
from FloatingPointSystem
max : (%, %) -> %
from OrderedSet
maximumExponent : () -> Integer

maximumExponent() returns the maximum exponent in the model

maximumExponent : Integer -> Integer

maximumExponent(e) sets the maximum exponent in the model to e

min : () -> % if % hasn't arbitraryExponent and % hasn't arbitraryPrecision
from FloatingPointSystem
min : (%, %) -> %
from OrderedSet
minimumExponent : () -> Integer

minimumExponent() returns the minimum exponent in the model

minimumExponent : Integer -> Integer

minimumExponent(e) sets the minimum exponent in the model to e

multiEuclidean : (List(%), %) -> Union(List(%), "failed")
from EuclideanDomain
negative? : % -> Boolean
from OrderedRing
norm : % -> %
from RealNumberSystem
nthRoot : (%, Integer) -> %
from RadicalCategory
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
order : % -> Integer
from FloatingPointSystem
patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %)
from PatternMatchable(Float)
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
positive? : % -> Boolean
from OrderedRing
precision : () -> PositiveInteger

precision() returns the number of digits in the model

precision : PositiveInteger -> PositiveInteger

precision(p) sets the number of digits in the model to p

prime? : % -> Boolean
from UniqueFactorizationDomain
principalIdeal : List(%) -> Record(coef : List(%), generator : %)
from PrincipalIdealDomain
quo : (%, %) -> %
from EuclideanDomain
recip : % -> Union(%, "failed")
from MagmaWithUnit
rem : (%, %) -> %
from EuclideanDomain
retract : % -> Float
from RetractableTo(Float)
retract : % -> Fraction(Integer)
from RetractableTo(Fraction(Integer))
retract : % -> Integer
from RetractableTo(Integer)
retractIfCan : % -> Union(Float, "failed")
from RetractableTo(Float)
retractIfCan : % -> Union(Fraction(Integer), "failed")
from RetractableTo(Fraction(Integer))
retractIfCan : % -> Union(Integer, "failed")
from RetractableTo(Integer)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
round : % -> %
from RealNumberSystem
sample : () -> %
from AbelianMonoid
sign : % -> Integer
from OrderedRing
sizeLess? : (%, %) -> Boolean
from EuclideanDomain
smaller? : (%, %) -> Boolean
from Comparable
sqrt : % -> %
from RadicalCategory
squareFree : % -> Factored(%)
from UniqueFactorizationDomain
squareFreePart : % -> %
from UniqueFactorizationDomain
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
toString : % -> String
from FloatingPointSystem
toString : (%, NonNegativeInteger) -> String
from FloatingPointSystem
truncate : % -> %
from RealNumberSystem
unit? : % -> Boolean
from EntireRing
unitCanonical : % -> %
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %)
from EntireRing
wholePart : % -> Integer
from RealNumberSystem
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

Module(Fraction(Integer))

ConvertibleTo(Float)

PrincipalIdealDomain

PartialOrder

NonAssociativeSemiRing

OrderedAbelianGroup

BiModule(%, %)

canonicalUnitNormal

Rng

CoercibleFrom(Integer)

SemiRing

EntireRing

PatternMatchable(Float)

NonAssociativeAlgebra(Fraction(Integer))

unitsKnown

RadicalCategory

FortranMachineTypeCategory

NonAssociativeSemiRng

Field

noZeroDivisors

RetractableTo(Fraction(Integer))

OrderedSet

Magma

SemiGroup

RightModule(Fraction(Integer))

GcdDomain

LeftModule(%)

NonAssociativeRing

UniqueFactorizationDomain

CharacteristicZero

Algebra(%)

CommutativeRing

CoercibleFrom(Fraction(Integer))

DivisionRing

RetractableTo(Float)

LeftOreRing

CancellationAbelianMonoid

EuclideanDomain

Approximate

canonicalsClosed

Comparable

TwoSidedRecip

RetractableTo(Integer)

OrderedCancellationAbelianMonoid

OrderedAbelianMonoid

OrderedRing

RealNumberSystem

FloatingPointSystem

CommutativeStar

AbelianMonoid

MagmaWithUnit

RightModule(%)

RealConstant

ConvertibleTo(String)

ConvertibleTo(DoubleFloat)

OrderedAbelianSemiGroup

Module(%)

CoercibleTo(OutputForm)

ConvertibleTo(Pattern(Float))

SemiRng

Monoid

NonAssociativeAlgebra(%)

Algebra(Fraction(Integer))

BasicType

Ring

AbelianSemiGroup

IntegralDomain

SetCategory

LeftModule(Fraction(Integer))

NonAssociativeRng

BiModule(Fraction(Integer), Fraction(Integer))

CoercibleFrom(Float)

AbelianGroup