MachineInteger

fortmac.spad line 1 [edit on github]

A domain which models the integer representation used by machines in the AXIOM-NAG link.

* : (%, %) -> %
from Magma
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
< : (%, %) -> Boolean
from PartialOrder
<= : (%, %) -> Boolean
from PartialOrder
= : (%, %) -> Boolean
from BasicType
> : (%, %) -> Boolean
from PartialOrder
>= : (%, %) -> Boolean
from PartialOrder
D : % -> %
from DifferentialRing
D : (%, NonNegativeInteger) -> %
from DifferentialRing
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
abs : % -> %
from OrderedRing
addmod : (%, %, %) -> %
from IntegerNumberSystem
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
base : () -> %
from IntegerNumberSystem
binomial : (%, %) -> %
from CombinatorialFunctionCategory
bit? : (%, %) -> Boolean
from IntegerNumberSystem
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : % -> %
from Algebra(%)
coerce : Integer -> %
from NonAssociativeRing
coerce : Expression(Integer) -> Expression(%)

coerce(x) returns x with coefficients in the domain

coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
convert : % -> DoubleFloat
from ConvertibleTo(DoubleFloat)
convert : % -> Float
from ConvertibleTo(Float)
convert : % -> InputForm
from ConvertibleTo(InputForm)
convert : % -> Integer
from ConvertibleTo(Integer)
convert : % -> Pattern(Integer)
from ConvertibleTo(Pattern(Integer))
copy : % -> %
from IntegerNumberSystem
dec : % -> %
from IntegerNumberSystem
differentiate : % -> %
from DifferentialRing
differentiate : (%, NonNegativeInteger) -> %
from DifferentialRing
divide : (%, %) -> Record(quotient : %, remainder : %)
from EuclideanDomain
euclideanSize : % -> NonNegativeInteger
from EuclideanDomain
even? : % -> Boolean
from IntegerNumberSystem
expressIdealMember : (List(%), %) -> Union(List(%), "failed")
from PrincipalIdealDomain
exquo : (%, %) -> Union(%, "failed")
from EntireRing
extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
from EuclideanDomain
extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
from EuclideanDomain
factor : % -> Factored(%)
from UniqueFactorizationDomain
factorial : % -> %
from CombinatorialFunctionCategory
gcd : (%, %) -> %
from GcdDomain
gcd : List(%) -> %
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
from GcdDomain
inc : % -> %
from IntegerNumberSystem
init : () -> %
from StepThrough
invmod : (%, %) -> %
from IntegerNumberSystem
latex : % -> String
from SetCategory
lcm : (%, %) -> %
from GcdDomain
lcm : List(%) -> %
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
from LeftOreRing
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
length : % -> %
from IntegerNumberSystem
mask : % -> %
from IntegerNumberSystem
max : (%, %) -> %
from OrderedSet
maxint : () -> PositiveInteger

maxint() returns the maximum integer in the model

maxint : PositiveInteger -> PositiveInteger

maxint(u) sets the maximum integer in the model to u

min : (%, %) -> %
from OrderedSet
mulmod : (%, %, %) -> %
from IntegerNumberSystem
multiEuclidean : (List(%), %) -> Union(List(%), "failed")
from EuclideanDomain
negative? : % -> Boolean
from OrderedRing
nextItem : % -> Union(%, "failed")
from StepThrough
odd? : % -> Boolean
from IntegerNumberSystem
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %)
from PatternMatchable(Integer)
permutation : (%, %) -> %
from CombinatorialFunctionCategory
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
positive? : % -> Boolean
from OrderedRing
positiveRemainder : (%, %) -> %
from IntegerNumberSystem
powmod : (%, %, %) -> %
from IntegerNumberSystem
prime? : % -> Boolean
from UniqueFactorizationDomain
principalIdeal : List(%) -> Record(coef : List(%), generator : %)
from PrincipalIdealDomain
quo : (%, %) -> %
from EuclideanDomain
random : % -> %
from IntegerNumberSystem
rational : % -> Fraction(Integer)
from IntegerNumberSystem
rational? : % -> Boolean
from IntegerNumberSystem
rationalIfCan : % -> Union(Fraction(Integer), "failed")
from IntegerNumberSystem
recip : % -> Union(%, "failed")
from MagmaWithUnit
rem : (%, %) -> %
from EuclideanDomain
retract : % -> Integer
from RetractableTo(Integer)
retractIfCan : % -> Union(Integer, "failed")
from RetractableTo(Integer)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
shift : (%, %) -> %
from IntegerNumberSystem
sign : % -> Integer
from OrderedRing
sizeLess? : (%, %) -> Boolean
from EuclideanDomain
smaller? : (%, %) -> Boolean
from Comparable
squareFree : % -> Factored(%)
from UniqueFactorizationDomain
squareFreePart : % -> %
from UniqueFactorizationDomain
submod : (%, %, %) -> %
from IntegerNumberSystem
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
symmetricRemainder : (%, %) -> %
from IntegerNumberSystem
unit? : % -> Boolean
from EntireRing
unitCanonical : % -> %
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %)
from EntireRing
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

ConvertibleTo(Float)

PrincipalIdealDomain

ConvertibleTo(Integer)

NonAssociativeSemiRing

BiModule(%, %)

ConvertibleTo(InputForm)

canonicalUnitNormal

Rng

TwoSidedRecip

OrderedAbelianGroup

SemiRing

EntireRing

unitsKnown

FortranMachineTypeCategory

NonAssociativeSemiRng

noZeroDivisors

OrderedSet

Magma

SemiGroup

GcdDomain

LeftModule(%)

NonAssociativeRing

UniqueFactorizationDomain

CharacteristicZero

OrderedIntegralDomain

Algebra(%)

CommutativeRing

DifferentialRing

OrderedAbelianMonoid

CombinatorialFunctionCategory

LeftOreRing

PartialOrder

CoercibleFrom(Integer)

CancellationAbelianMonoid

EuclideanDomain

Comparable

RetractableTo(Integer)

OrderedCancellationAbelianMonoid

OrderedRing

CommutativeStar

AbelianMonoid

MagmaWithUnit

RightModule(%)

RealConstant

ConvertibleTo(DoubleFloat)

OrderedAbelianSemiGroup

Module(%)

CoercibleTo(OutputForm)

ConvertibleTo(Pattern(Integer))

SemiRng

Monoid

NonAssociativeAlgebra(%)

BasicType

Ring

AbelianSemiGroup

IntegralDomain

SetCategory

IntegerNumberSystem

multiplicativeValuation

NonAssociativeRng

PatternMatchable(Integer)

StepThrough

AbelianGroup