PartialDifferentialOperator(R, Var)
skpol.spad line 357
[edit on github]
PartialDifferentialOperator(R
, V
) defines a ring of partial differential operators in variables from V
and with coefficients in a partial differential ring R
. Multiplication of operators corresponds to composition of operators.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
- from RightModule(Integer)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, R) -> % if R has Field
- from AbelianMonoidRing(R, IndexedExponents(Var))
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : Var -> %
D(v)
returns the operator corresponding to derivative with respect to v
in R
.
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- adjoint : % -> %
adjoint(p)
returns the adjoint of operator p
.
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if R has EntireRing
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- from FiniteAbelianMonoidRing(R, IndexedExponents(Var))
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, Var, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, IndexedExponents(Var), Var)
- coefficient : (%, List(Var), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(R, IndexedExponents(Var), Var)
- coefficient : (%, IndexedExponents(Var)) -> R
- from AbelianMonoidRing(R, IndexedExponents(Var))
- coefficients : % -> List(R)
- from FreeModuleCategory(R, IndexedExponents(Var))
- coerce : % -> % if R has CommutativeRing and % has VariablesCommuteWithCoefficients or R has IntegralDomain and % has VariablesCommuteWithCoefficients
- from Algebra(%)
- coerce : R -> %
- from Algebra(R)
- coerce : Fraction(Integer) -> % if R has Algebra(Fraction(Integer)) or R has RetractableTo(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- construct : List(Record(k : IndexedExponents(Var), c : R)) -> %
- from IndexedProductCategory(R, IndexedExponents(Var))
- constructOrdered : List(Record(k : IndexedExponents(Var), c : R)) -> %
- from IndexedProductCategory(R, IndexedExponents(Var))
- content : % -> R if R has GcdDomain
- from FiniteAbelianMonoidRing(R, IndexedExponents(Var))
- degree : % -> IndexedExponents(Var)
- from SolvableSkewPolynomialCategory(R, IndexedExponents(Var))
- degree : (%, List(Var)) -> List(NonNegativeInteger)
- from MaybeSkewPolynomialCategory(R, IndexedExponents(Var), Var)
- degree : (%, Var) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, IndexedExponents(Var), Var)
- exquo : (%, %) -> Union(%, "failed") if R has EntireRing
- from EntireRing
- exquo : (%, R) -> Union(%, "failed") if R has EntireRing
- from FiniteAbelianMonoidRing(R, IndexedExponents(Var))
- fmecg : (%, IndexedExponents(Var), R, %) -> %
- from FiniteAbelianMonoidRing(R, IndexedExponents(Var))
- ground : % -> R
- from FiniteAbelianMonoidRing(R, IndexedExponents(Var))
- ground? : % -> Boolean
- from FiniteAbelianMonoidRing(R, IndexedExponents(Var))
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> R
- from SolvableSkewPolynomialCategory(R, IndexedExponents(Var))
- leadingMonomial : % -> %
- from SolvableSkewPolynomialCategory(R, IndexedExponents(Var))
- leadingSupport : % -> IndexedExponents(Var)
- from IndexedProductCategory(R, IndexedExponents(Var))
- leadingTerm : % -> Record(k : IndexedExponents(Var), c : R)
- from IndexedProductCategory(R, IndexedExponents(Var))
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- linearExtend : (Mapping(R, IndexedExponents(Var)), %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, IndexedExponents(Var))
- listOfTerms : % -> List(Record(k : IndexedExponents(Var), c : R))
- from IndexedDirectProductCategory(R, IndexedExponents(Var))
- mainVariable : % -> Union(Var, "failed")
- from MaybeSkewPolynomialCategory(R, IndexedExponents(Var), Var)
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, IndexedExponents(Var))
- mapExponents : (Mapping(IndexedExponents(Var), IndexedExponents(Var)), %) -> %
- from FiniteAbelianMonoidRing(R, IndexedExponents(Var))
- minimumDegree : % -> IndexedExponents(Var)
- from FiniteAbelianMonoidRing(R, IndexedExponents(Var))
- monomial : (%, Var, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, IndexedExponents(Var), Var)
- monomial : (%, List(Var), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(R, IndexedExponents(Var), Var)
- monomial : (R, IndexedExponents(Var)) -> %
- from SolvableSkewPolynomialCategory(R, IndexedExponents(Var))
- monomial? : % -> Boolean
- from IndexedProductCategory(R, IndexedExponents(Var))
- monomials : % -> List(%)
- from MaybeSkewPolynomialCategory(R, IndexedExponents(Var), Var)
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, IndexedExponents(Var))
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if R has IntegralDomain and % has VariablesCommuteWithCoefficients or R has Algebra(Fraction(Integer)) or R has CommutativeRing and % has VariablesCommuteWithCoefficients
- from NonAssociativeAlgebra(%)
- pomopo! : (%, R, IndexedExponents(Var), %) -> %
- from FiniteAbelianMonoidRing(R, IndexedExponents(Var))
- primitiveMonomials : % -> List(%)
- from MaybeSkewPolynomialCategory(R, IndexedExponents(Var), Var)
- primitivePart : % -> % if R has GcdDomain
- from FiniteAbelianMonoidRing(R, IndexedExponents(Var))
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reducedSystem : Matrix(%) -> Matrix(R)
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reductum : % -> %
- from SolvableSkewPolynomialCategory(R, IndexedExponents(Var))
- retract : % -> R
- from RetractableTo(R)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- support : % -> List(IndexedExponents(Var))
- from FreeModuleCategory(R, IndexedExponents(Var))
- totalDegree : % -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, IndexedExponents(Var), Var)
- totalDegree : (%, List(Var)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, IndexedExponents(Var), Var)
- totalDegreeSorted : (%, List(Var)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, IndexedExponents(Var), Var)
- unit? : % -> Boolean if R has EntireRing
- from EntireRing
- unitCanonical : % -> % if R has EntireRing
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
- from EntireRing
- variables : % -> List(Var)
- from MaybeSkewPolynomialCategory(R, IndexedExponents(Var), Var)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Module(Fraction(Integer))
NonAssociativeSemiRing
LeftModule(R)
BiModule(%, %)
canonicalUnitNormal
Rng
CoercibleFrom(Integer)
TwoSidedRecip
FullyRetractableTo(R)
SolvableSkewPolynomialCategory(R, IndexedExponents(Var))
SemiRing
EntireRing
MultivariateSkewPolynomialCategory(R, IndexedExponents(Var), Var)
NonAssociativeAlgebra(Fraction(Integer))
FreeModuleCategory(R, IndexedExponents(Var))
unitsKnown
FullyLinearlyExplicitOver(R)
FiniteAbelianMonoidRing(R, IndexedExponents(Var))
CharacteristicNonZero
IndexedProductCategory(R, IndexedExponents(Var))
noZeroDivisors
Magma
SemiGroup
IntegralDomain
LeftModule(%)
NonAssociativeRing
CharacteristicZero
MaybeSkewPolynomialCategory(R, IndexedExponents(Var), Var)
Module(R)
CommutativeRing
Algebra(%)
BiModule(R, R)
RightModule(Fraction(Integer))
Algebra(R)
RightModule(R)
NonAssociativeSemiRng
CancellationAbelianMonoid
Comparable
RetractableTo(Integer)
LinearlyExplicitOver(R)
AbelianMonoidRing(R, IndexedExponents(Var))
CommutativeStar
AbelianMonoid
MagmaWithUnit
RightModule(%)
AbelianProductCategory(R)
Module(%)
CoercibleTo(OutputForm)
SemiRng
LinearlyExplicitOver(Integer)
Monoid
NonAssociativeAlgebra(R)
NonAssociativeAlgebra(%)
Algebra(Fraction(Integer))
BasicType
Ring
RightModule(Integer)
LeftModule(Fraction(Integer))
IndexedDirectProductCategory(R, IndexedExponents(Var))
SetCategory
CoercibleFrom(Fraction(Integer))
NonAssociativeRng
CoercibleFrom(R)
BiModule(Fraction(Integer), Fraction(Integer))
RetractableTo(Fraction(Integer))
RetractableTo(R)
AbelianGroup
AbelianSemiGroup