RealClosure(TheField)
reclos.spad line 866
[edit on github]
This domain implements the real closure of an ordered field.
- * : (%, %) -> %
- from Magma
- * : (%, TheField) -> %
- from RightModule(TheField)
- * : (%, Fraction(Integer)) -> %
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> %
- from RightModule(Integer)
- * : (TheField, %) -> %
- from LeftModule(TheField)
- * : (Fraction(Integer), %) -> %
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> %
- from Field
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- < : (%, %) -> Boolean
- from PartialOrder
- <= : (%, %) -> Boolean
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean
- from PartialOrder
- >= : (%, %) -> Boolean
- from PartialOrder
- ^ : (%, Fraction(Integer)) -> %
- from RadicalCategory
- ^ : (%, Integer) -> %
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- abs : % -> %
- from OrderedRing
- algebraicOf : (RightOpenIntervalRootCharacterization(%, SparseUnivariatePolynomial(%)), OutputForm) -> %
algebraicOf(char)
is the external number
- allRootsOf : Polynomial(%) -> List(%)
- from RealClosedField
- allRootsOf : Polynomial(Fraction(Integer)) -> List(%)
- from RealClosedField
- allRootsOf : Polynomial(Integer) -> List(%)
- from RealClosedField
- allRootsOf : SparseUnivariatePolynomial(%) -> List(%)
- from RealClosedField
- allRootsOf : SparseUnivariatePolynomial(Fraction(Integer)) -> List(%)
- from RealClosedField
- allRootsOf : SparseUnivariatePolynomial(Integer) -> List(%)
- from RealClosedField
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- approximate : (%, %) -> Fraction(Integer)
- from RealClosedField
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : % -> %
- from Algebra(%)
- coerce : TheField -> %
- from CoercibleFrom(TheField)
- coerce : Fraction(Integer) -> %
- from CoercibleFrom(Fraction(Integer))
- coerce : Integer -> %
- from CoercibleFrom(Integer)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- divide : (%, %) -> Record(quotient : %, remainder : %)
- from EuclideanDomain
- euclideanSize : % -> NonNegativeInteger
- from EuclideanDomain
- expressIdealMember : (List(%), %) -> Union(List(%), "failed")
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
- from EuclideanDomain
- factor : % -> Factored(%)
- from UniqueFactorizationDomain
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from GcdDomain
- inv : % -> %
- from DivisionRing
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- mainCharacterization : % -> Union(RightOpenIntervalRootCharacterization(%, SparseUnivariatePolynomial(%)), "failed")
mainCharacterization(x)
is the main algebraic quantity of x
(SEG
)
- mainDefiningPolynomial : % -> Union(SparseUnivariatePolynomial(%), "failed")
- from RealClosedField
- mainForm : % -> Union(OutputForm, "failed")
- from RealClosedField
- mainValue : % -> Union(SparseUnivariatePolynomial(%), "failed")
- from RealClosedField
- max : (%, %) -> %
- from OrderedSet
- min : (%, %) -> %
- from OrderedSet
- multiEuclidean : (List(%), %) -> Union(List(%), "failed")
- from EuclideanDomain
- negative? : % -> Boolean
- from OrderedRing
- nthRoot : (%, Integer) -> %
- from RadicalCategory
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(Integer)
- positive? : % -> Boolean
- from OrderedRing
- prime? : % -> Boolean
- from UniqueFactorizationDomain
- principalIdeal : List(%) -> Record(coef : List(%), generator : %)
- from PrincipalIdealDomain
- quo : (%, %) -> %
- from EuclideanDomain
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- relativeApprox : (%, %) -> Fraction(Integer)
relativeApprox(n, p)
gives a relative approximation of n
that has precision p
- rem : (%, %) -> %
- from EuclideanDomain
- rename : (%, OutputForm) -> %
- from RealClosedField
- rename! : (%, OutputForm) -> %
- from RealClosedField
- retract : % -> TheField
- from RetractableTo(TheField)
- retract : % -> Fraction(Integer)
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer
- from RetractableTo(Integer)
- retractIfCan : % -> Union(TheField, "failed")
- from RetractableTo(TheField)
- retractIfCan : % -> Union(Fraction(Integer), "failed")
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed")
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- rootOf : (SparseUnivariatePolynomial(%), PositiveInteger) -> Union(%, "failed")
- from RealClosedField
- rootOf : (SparseUnivariatePolynomial(%), PositiveInteger, OutputForm) -> Union(%, "failed")
- from RealClosedField
- sample : () -> %
- from AbelianMonoid
- sign : % -> Integer
- from OrderedRing
- sizeLess? : (%, %) -> Boolean
- from EuclideanDomain
- smaller? : (%, %) -> Boolean
- from Comparable
- sqrt : % -> %
- from RealClosedField
- sqrt : (%, PositiveInteger) -> %
- from RealClosedField
- sqrt : Fraction(Integer) -> %
- from RealClosedField
- sqrt : Integer -> %
- from RealClosedField
- squareFree : % -> Factored(%)
- from UniqueFactorizationDomain
- squareFreePart : % -> %
- from UniqueFactorizationDomain
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Module(Fraction(Integer))
PrincipalIdealDomain
PartialOrder
NonAssociativeSemiRing
BiModule(%, %)
Field
canonicalUnitNormal
Rng
RealClosedField
CoercibleFrom(Integer)
TwoSidedRecip
SemiRing
EntireRing
LeftOreRing
NonAssociativeAlgebra(Fraction(Integer))
unitsKnown
RadicalCategory
BiModule(TheField, TheField)
Algebra(Integer)
LeftModule(Integer)
noZeroDivisors
RetractableTo(Fraction(Integer))
OrderedSet
UniqueFactorizationDomain
SemiGroup
NonAssociativeAlgebra(Integer)
RightModule(Fraction(Integer))
Magma
GcdDomain
IntegralDomain
LeftModule(%)
CharacteristicZero
Algebra(%)
FullyRetractableTo(TheField)
CommutativeRing
NonAssociativeAlgebra(TheField)
OrderedAbelianMonoid
DivisionRing
NonAssociativeSemiRng
CancellationAbelianMonoid
EuclideanDomain
canonicalsClosed
Comparable
RetractableTo(Integer)
OrderedCancellationAbelianMonoid
OrderedRing
RightModule(TheField)
CommutativeStar
AbelianMonoid
RetractableTo(TheField)
MagmaWithUnit
NonAssociativeRing
RightModule(%)
OrderedAbelianSemiGroup
Module(%)
CoercibleTo(OutputForm)
LeftModule(TheField)
BiModule(Integer, Integer)
Module(Integer)
SemiRng
Monoid
NonAssociativeAlgebra(%)
Algebra(Fraction(Integer))
BasicType
Ring
RightModule(Integer)
LeftModule(Fraction(Integer))
AbelianSemiGroup
SetCategory
FullyRetractableTo(Fraction(Integer))
Algebra(TheField)
CoercibleFrom(Fraction(Integer))
NonAssociativeRng
BiModule(Fraction(Integer), Fraction(Integer))
OrderedAbelianGroup
Module(TheField)
AbelianGroup
CoercibleFrom(TheField)