RadicalFunctionField(F, UP, UPUP, radicnd, n)

curve.spad line 581 [edit on github]

Function field defined by y^n = f(x).

* : (%, %) -> %
from Magma
* : (%, Fraction(UP)) -> %
from RightModule(Fraction(UP))
* : (%, Fraction(Integer)) -> %
from RightModule(Fraction(Integer))
* : (%, Integer) -> % if Fraction(UP) has LinearlyExplicitOver(Integer)
from RightModule(Integer)
* : (Fraction(UP), %) -> %
from LeftModule(Fraction(UP))
* : (Fraction(Integer), %) -> %
from LeftModule(Fraction(Integer))
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, %) -> %
from Field
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
D : % -> % if Fraction(UP) has DifferentialRing
from DifferentialRing
D : (%, List(Symbol)) -> % if Fraction(UP) has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
D : (%, List(Symbol), List(NonNegativeInteger)) -> % if Fraction(UP) has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
D : (%, Mapping(Fraction(UP), Fraction(UP))) -> %
from DifferentialExtension(Fraction(UP))
D : (%, Mapping(Fraction(UP), Fraction(UP)), NonNegativeInteger) -> %
from DifferentialExtension(Fraction(UP))
D : (%, NonNegativeInteger) -> % if Fraction(UP) has DifferentialRing
from DifferentialRing
D : (%, Symbol) -> % if Fraction(UP) has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
D : (%, Symbol, NonNegativeInteger) -> % if Fraction(UP) has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
^ : (%, Integer) -> %
from DivisionRing
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
absolutelyIrreducible? : () -> Boolean
from FunctionFieldCategory(F, UP, UPUP)
algSplitSimple : (%, Mapping(UP, UP)) -> Record(num : %, den : UP, derivden : UP, gd : UP)
from FunctionFieldCategory(F, UP, UPUP)
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
basis : () -> Vector(%)
from FramedModule(Fraction(UP))
branchPoint? : F -> Boolean
from FunctionFieldCategory(F, UP, UPUP)
branchPoint? : UP -> Boolean
from FunctionFieldCategory(F, UP, UPUP)
branchPointAtInfinity? : () -> Boolean
from FunctionFieldCategory(F, UP, UPUP)
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
characteristicPolynomial : % -> UPUP
from FiniteRankAlgebra(Fraction(UP), UPUP)
charthRoot : % -> % if Fraction(UP) has FiniteFieldCategory
from FiniteFieldCategory
charthRoot : % -> Union(%, "failed") if Fraction(UP) has CharacteristicNonZero
from CharacteristicNonZero
coerce : % -> %
from Algebra(%)
coerce : Fraction(UP) -> %
from Algebra(Fraction(UP))
coerce : Fraction(Integer) -> %
from Algebra(Fraction(Integer))
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
complementaryBasis : Vector(%) -> Vector(%)
from FunctionFieldCategory(F, UP, UPUP)
conditionP : Matrix(%) -> Union(Vector(%), "failed") if Fraction(UP) has FiniteFieldCategory
from PolynomialFactorizationExplicit
convert : UPUP -> %
from MonogenicAlgebra(Fraction(UP), UPUP)
convert : Vector(Fraction(UP)) -> %
from FramedModule(Fraction(UP))
convert : % -> UPUP
from ConvertibleTo(UPUP)
convert : % -> InputForm if Fraction(UP) has Finite
from ConvertibleTo(InputForm)
convert : % -> Vector(Fraction(UP))
from FramedModule(Fraction(UP))
coordinates : Vector(%) -> Matrix(Fraction(UP))
from FramedModule(Fraction(UP))
coordinates : (Vector(%), Vector(%)) -> Matrix(Fraction(UP))
from FiniteRankAlgebra(Fraction(UP), UPUP)
coordinates : % -> Vector(Fraction(UP))
from FramedModule(Fraction(UP))
coordinates : (%, Vector(%)) -> Vector(Fraction(UP))
from FiniteRankAlgebra(Fraction(UP), UPUP)
createPrimitiveElement : () -> % if Fraction(UP) has FiniteFieldCategory
from FiniteFieldCategory
definingPolynomial : () -> UPUP
from MonogenicAlgebra(Fraction(UP), UPUP)
derivationCoordinates : (Vector(%), Mapping(Fraction(UP), Fraction(UP))) -> Matrix(Fraction(UP))
from MonogenicAlgebra(Fraction(UP), UPUP)
differentiate : % -> % if Fraction(UP) has DifferentialRing
from DifferentialRing
differentiate : (%, List(Symbol)) -> % if Fraction(UP) has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if Fraction(UP) has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
differentiate : (%, Mapping(UP, UP)) -> %
from FunctionFieldCategory(F, UP, UPUP)
differentiate : (%, Mapping(Fraction(UP), Fraction(UP))) -> %
from DifferentialExtension(Fraction(UP))
differentiate : (%, Mapping(Fraction(UP), Fraction(UP)), NonNegativeInteger) -> %
from DifferentialExtension(Fraction(UP))
differentiate : (%, NonNegativeInteger) -> % if Fraction(UP) has DifferentialRing
from DifferentialRing
differentiate : (%, Symbol) -> % if Fraction(UP) has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
differentiate : (%, Symbol, NonNegativeInteger) -> % if Fraction(UP) has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
discreteLog : % -> NonNegativeInteger if Fraction(UP) has FiniteFieldCategory
from FiniteFieldCategory
discreteLog : (%, %) -> Union(NonNegativeInteger, "failed") if Fraction(UP) has FiniteFieldCategory
from FieldOfPrimeCharacteristic
discriminant : () -> Fraction(UP)
from FramedAlgebra(Fraction(UP), UPUP)
discriminant : Vector(%) -> Fraction(UP)
from FiniteRankAlgebra(Fraction(UP), UPUP)
divide : (%, %) -> Record(quotient : %, remainder : %)
from EuclideanDomain
elliptic : () -> Union(UP, "failed")
from FunctionFieldCategory(F, UP, UPUP)
elt : (%, F, F) -> F
from FunctionFieldCategory(F, UP, UPUP)
enumerate : () -> List(%) if Fraction(UP) has Finite
from Finite
euclideanSize : % -> NonNegativeInteger
from EuclideanDomain
expressIdealMember : (List(%), %) -> Union(List(%), "failed")
from PrincipalIdealDomain
exquo : (%, %) -> Union(%, "failed")
from EntireRing
extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
from EuclideanDomain
extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
from EuclideanDomain
factor : % -> Factored(%)
from UniqueFactorizationDomain
factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if Fraction(UP) has FiniteFieldCategory
from PolynomialFactorizationExplicit
factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if Fraction(UP) has FiniteFieldCategory
from PolynomialFactorizationExplicit
factorsOfCyclicGroupSize : () -> List(Record(factor : Integer, exponent : NonNegativeInteger)) if Fraction(UP) has FiniteFieldCategory
from FiniteFieldCategory
gcd : (%, %) -> %
from GcdDomain
gcd : List(%) -> %
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
from GcdDomain
generator : () -> %
from MonogenicAlgebra(Fraction(UP), UPUP)
genus : () -> NonNegativeInteger
from FunctionFieldCategory(F, UP, UPUP)
hash : % -> SingleInteger if Fraction(UP) has Hashable
from Hashable
hashUpdate! : (HashState, %) -> HashState if Fraction(UP) has Hashable
from Hashable
hyperelliptic : () -> Union(UP, "failed")
from FunctionFieldCategory(F, UP, UPUP)
index : PositiveInteger -> % if Fraction(UP) has Finite
from Finite
init : () -> % if Fraction(UP) has FiniteFieldCategory
from StepThrough
integral? : % -> Boolean
from FunctionFieldCategory(F, UP, UPUP)
integral? : (%, F) -> Boolean
from FunctionFieldCategory(F, UP, UPUP)
integral? : (%, UP) -> Boolean
from FunctionFieldCategory(F, UP, UPUP)
integralAtInfinity? : % -> Boolean
from FunctionFieldCategory(F, UP, UPUP)
integralBasis : () -> Vector(%)
from FunctionFieldCategory(F, UP, UPUP)
integralBasisAtInfinity : () -> Vector(%)
from FunctionFieldCategory(F, UP, UPUP)
integralCoordinates : % -> Record(num : Vector(UP), den : UP)
from FunctionFieldCategory(F, UP, UPUP)
integralDerivationMatrix : Mapping(UP, UP) -> Record(num : Matrix(UP), den : UP)
from FunctionFieldCategory(F, UP, UPUP)
integralMatrix : () -> Matrix(Fraction(UP))
from FunctionFieldCategory(F, UP, UPUP)
integralMatrixAtInfinity : () -> Matrix(Fraction(UP))
from FunctionFieldCategory(F, UP, UPUP)
integralRepresents : (Vector(UP), UP) -> %
from FunctionFieldCategory(F, UP, UPUP)
inv : % -> %
from DivisionRing
inverseIntegralMatrix : () -> Matrix(Fraction(UP))
from FunctionFieldCategory(F, UP, UPUP)
inverseIntegralMatrixAtInfinity : () -> Matrix(Fraction(UP))
from FunctionFieldCategory(F, UP, UPUP)
latex : % -> String
from SetCategory
lcm : (%, %) -> %
from GcdDomain
lcm : List(%) -> %
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
from LeftOreRing
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
lift : % -> UPUP
from MonogenicAlgebra(Fraction(UP), UPUP)
lookup : % -> PositiveInteger if Fraction(UP) has Finite
from Finite
minimalPolynomial : % -> UPUP
from FiniteRankAlgebra(Fraction(UP), UPUP)
multiEuclidean : (List(%), %) -> Union(List(%), "failed")
from EuclideanDomain
nextItem : % -> Union(%, "failed") if Fraction(UP) has FiniteFieldCategory
from StepThrough
nonSingularModel : Symbol -> List(Polynomial(F)) if F has Field
from FunctionFieldCategory(F, UP, UPUP)
norm : % -> Fraction(UP)
from FiniteRankAlgebra(Fraction(UP), UPUP)
normalizeAtInfinity : Vector(%) -> Vector(%)
from FunctionFieldCategory(F, UP, UPUP)
numberOfComponents : () -> NonNegativeInteger
from FunctionFieldCategory(F, UP, UPUP)
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
order : % -> OnePointCompletion(PositiveInteger) if Fraction(UP) has FiniteFieldCategory
from FieldOfPrimeCharacteristic
order : % -> PositiveInteger if Fraction(UP) has FiniteFieldCategory
from FiniteFieldCategory
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
prime? : % -> Boolean
from UniqueFactorizationDomain
primeFrobenius : % -> % if Fraction(UP) has FiniteFieldCategory
from FieldOfPrimeCharacteristic
primeFrobenius : (%, NonNegativeInteger) -> % if Fraction(UP) has FiniteFieldCategory
from FieldOfPrimeCharacteristic
primitive? : % -> Boolean if Fraction(UP) has FiniteFieldCategory
from FiniteFieldCategory
primitiveElement : () -> % if Fraction(UP) has FiniteFieldCategory
from FiniteFieldCategory
primitivePart : % -> %
from FunctionFieldCategory(F, UP, UPUP)
principalIdeal : List(%) -> Record(coef : List(%), generator : %)
from PrincipalIdealDomain
quo : (%, %) -> %
from EuclideanDomain
ramified? : F -> Boolean
from FunctionFieldCategory(F, UP, UPUP)
ramified? : UP -> Boolean
from FunctionFieldCategory(F, UP, UPUP)
ramifiedAtInfinity? : () -> Boolean
from FunctionFieldCategory(F, UP, UPUP)
random : () -> % if Fraction(UP) has Finite
from Finite
rank : () -> PositiveInteger
from FiniteRankAlgebra(Fraction(UP), UPUP)
rationalPoint? : (F, F) -> Boolean
from FunctionFieldCategory(F, UP, UPUP)
rationalPoints : () -> List(List(F)) if F has Finite
from FunctionFieldCategory(F, UP, UPUP)
recip : % -> Union(%, "failed")
from MagmaWithUnit
reduce : UPUP -> %
from MonogenicAlgebra(Fraction(UP), UPUP)
reduce : Fraction(UPUP) -> Union(%, "failed")
from MonogenicAlgebra(Fraction(UP), UPUP)
reduceBasisAtInfinity : Vector(%) -> Vector(%)
from FunctionFieldCategory(F, UP, UPUP)
reducedSystem : Matrix(%) -> Matrix(Fraction(UP))
from LinearlyExplicitOver(Fraction(UP))
reducedSystem : Matrix(%) -> Matrix(Integer) if Fraction(UP) has LinearlyExplicitOver(Integer)
from LinearlyExplicitOver(Integer)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Fraction(UP)), vec : Vector(Fraction(UP)))
from LinearlyExplicitOver(Fraction(UP))
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if Fraction(UP) has LinearlyExplicitOver(Integer)
from LinearlyExplicitOver(Integer)
regularRepresentation : % -> Matrix(Fraction(UP))
from FramedAlgebra(Fraction(UP), UPUP)
regularRepresentation : (%, Vector(%)) -> Matrix(Fraction(UP))
from FiniteRankAlgebra(Fraction(UP), UPUP)
rem : (%, %) -> %
from EuclideanDomain
representationType : () -> Union("prime", "polynomial", "normal", "cyclic") if Fraction(UP) has FiniteFieldCategory
from FiniteFieldCategory
represents : (Vector(UP), UP) -> %
from FunctionFieldCategory(F, UP, UPUP)
represents : Vector(Fraction(UP)) -> %
from FramedModule(Fraction(UP))
represents : (Vector(Fraction(UP)), Vector(%)) -> %
from FiniteRankAlgebra(Fraction(UP), UPUP)
retract : % -> Fraction(UP)
from RetractableTo(Fraction(UP))
retract : % -> Fraction(Integer) if Fraction(UP) has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retract : % -> Integer if Fraction(UP) has RetractableTo(Integer)
from RetractableTo(Integer)
retractIfCan : % -> Union(Fraction(UP), "failed")
from RetractableTo(Fraction(UP))
retractIfCan : % -> Union(Fraction(Integer), "failed") if Fraction(UP) has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retractIfCan : % -> Union(Integer, "failed") if Fraction(UP) has RetractableTo(Integer)
from RetractableTo(Integer)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
singular? : F -> Boolean
from FunctionFieldCategory(F, UP, UPUP)
singular? : UP -> Boolean
from FunctionFieldCategory(F, UP, UPUP)
singularAtInfinity? : () -> Boolean
from FunctionFieldCategory(F, UP, UPUP)
size : () -> NonNegativeInteger if Fraction(UP) has Finite
from Finite
sizeLess? : (%, %) -> Boolean
from EuclideanDomain
smaller? : (%, %) -> Boolean if Fraction(UP) has Finite
from Comparable
solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if Fraction(UP) has FiniteFieldCategory
from PolynomialFactorizationExplicit
special_order : (%, List(UP)) -> Integer
from FunctionFieldCategory(F, UP, UPUP)
squareFree : % -> Factored(%)
from UniqueFactorizationDomain
squareFreePart : % -> %
from UniqueFactorizationDomain
squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if Fraction(UP) has FiniteFieldCategory
from PolynomialFactorizationExplicit
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
tableForDiscreteLogarithm : Integer -> Table(PositiveInteger, NonNegativeInteger) if Fraction(UP) has FiniteFieldCategory
from FiniteFieldCategory
trace : % -> Fraction(UP)
from FiniteRankAlgebra(Fraction(UP), UPUP)
traceMatrix : () -> Matrix(Fraction(UP))
from FramedAlgebra(Fraction(UP), UPUP)
traceMatrix : Vector(%) -> Matrix(Fraction(UP))
from FiniteRankAlgebra(Fraction(UP), UPUP)
unit? : % -> Boolean
from EntireRing
unitCanonical : % -> %
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %)
from EntireRing
yCoordinates : % -> Record(num : Vector(UP), den : UP)
from FunctionFieldCategory(F, UP, UPUP)
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

Module(Fraction(Integer))

NonAssociativeSemiRing

BiModule(%, %)

Finite

ConvertibleTo(InputForm)

Field

canonicalUnitNormal

Rng

CoercibleFrom(Fraction(UP))

DifferentialExtension(Fraction(UP))

MonogenicAlgebra(Fraction(UP), UPUP)

CoercibleFrom(Integer)

TwoSidedRecip

SemiRing

EntireRing

NonAssociativeAlgebra(Fraction(Integer))

CharacteristicNonZero

NonAssociativeAlgebra(Fraction(UP))

unitsKnown

LeftModule(Fraction(UP))

RetractableTo(Fraction(Integer))

UniqueFactorizationDomain

FullyLinearlyExplicitOver(Fraction(UP))

SemiGroup

RightModule(Fraction(Integer))

GcdDomain

IntegralDomain

LeftModule(%)

RetractableTo(Fraction(UP))

Magma

NonAssociativeRing

RightModule(Fraction(UP))

PartialDifferentialRing(Symbol)

CharacteristicZero

BiModule(Fraction(UP), Fraction(UP))

CommutativeRing

Algebra(%)

DifferentialRing

DivisionRing

ConvertibleTo(UPUP)

PrincipalIdealDomain

NonAssociativeSemiRng

CancellationAbelianMonoid

EuclideanDomain

canonicalsClosed

FramedModule(Fraction(UP))

RetractableTo(Integer)

SetCategory

FunctionFieldCategory(F, UP, UPUP)

FramedAlgebra(Fraction(UP), UPUP)

AbelianMonoid

MagmaWithUnit

Comparable

RightModule(%)

CommutativeStar

Hashable

FiniteRankAlgebra(Fraction(UP), UPUP)

StepThrough

Module(%)

CoercibleTo(OutputForm)

LinearlyExplicitOver(Fraction(UP))

LinearlyExplicitOver(Integer)

SemiRng

Module(Fraction(UP))

Monoid

PolynomialFactorizationExplicit

FiniteFieldCategory

LeftOreRing

NonAssociativeAlgebra(%)

Algebra(Fraction(Integer))

BasicType

Ring

Algebra(Fraction(UP))

RightModule(Integer)

AbelianSemiGroup

noZeroDivisors

LeftModule(Fraction(Integer))

CoercibleFrom(Fraction(Integer))

NonAssociativeRng

FieldOfPrimeCharacteristic

BiModule(Fraction(Integer), Fraction(Integer))

AbelianGroup

FullyRetractableTo(Fraction(UP))