SimpleAlgebraicExtension(R, UP, M)
algext.spad line 1
[edit on github]
Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain, R
, is the underlying ring, the second argument is a domain of univariate polynomials over R
, while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in R
. The second argument is both the type of the third argument and the underlying representation used by SAE itself.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Field
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
- from RightModule(Integer)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Field
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> % if R has Field
- from Field
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : % -> % if R has FiniteFieldCategory or R has DifferentialRing and R has Field
- from DifferentialRing
- D : (%, List(Symbol)) -> % if R has PartialDifferentialRing(Symbol) and R has Field
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has PartialDifferentialRing(Symbol) and R has Field
- from PartialDifferentialRing(Symbol)
- D : (%, Mapping(R, R)) -> % if R has Field
- from DifferentialExtension(R)
- D : (%, Mapping(R, R), NonNegativeInteger) -> % if R has Field
- from DifferentialExtension(R)
- D : (%, NonNegativeInteger) -> % if R has FiniteFieldCategory or R has DifferentialRing and R has Field
- from DifferentialRing
- D : (%, Symbol) -> % if R has PartialDifferentialRing(Symbol) and R has Field
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing(Symbol) and R has Field
- from PartialDifferentialRing(Symbol)
- ^ : (%, Integer) -> % if R has Field
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if R has Field
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- basis : () -> Vector(%)
- from FramedModule(R)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- characteristicPolynomial : % -> UP
- from FiniteRankAlgebra(R, UP)
- charthRoot : % -> % if R has FiniteFieldCategory
- from FiniteFieldCategory
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit and R has Field
- from PolynomialFactorizationExplicit
- coerce : % -> %
- from Algebra(%)
- coerce : R -> %
- from Algebra(R)
- coerce : Fraction(Integer) -> % if R has RetractableTo(Fraction(Integer)) or R has Field
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit and R has Field or R has FiniteFieldCategory
- from PolynomialFactorizationExplicit
- convert : UP -> %
- from MonogenicAlgebra(R, UP)
- convert : Vector(R) -> %
- from FramedModule(R)
- convert : % -> UP
- from ConvertibleTo(UP)
- convert : % -> InputForm if R has Finite
- from ConvertibleTo(InputForm)
- convert : % -> Vector(R)
- from FramedModule(R)
- coordinates : Vector(%) -> Matrix(R)
- from FramedModule(R)
- coordinates : (Vector(%), Vector(%)) -> Matrix(R)
- from FiniteRankAlgebra(R, UP)
- coordinates : % -> Vector(R)
- from FramedModule(R)
- coordinates : (%, Vector(%)) -> Vector(R)
- from FiniteRankAlgebra(R, UP)
- createPrimitiveElement : () -> % if R has FiniteFieldCategory
- from FiniteFieldCategory
- definingPolynomial : () -> UP
- from MonogenicAlgebra(R, UP)
- derivationCoordinates : (Vector(%), Mapping(R, R)) -> Matrix(R) if R has Field
- from MonogenicAlgebra(R, UP)
- differentiate : % -> % if R has FiniteFieldCategory or R has DifferentialRing and R has Field
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> % if R has PartialDifferentialRing(Symbol) and R has Field
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has PartialDifferentialRing(Symbol) and R has Field
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Mapping(R, R)) -> % if R has Field
- from DifferentialExtension(R)
- differentiate : (%, Mapping(R, R), NonNegativeInteger) -> % if R has Field
- from DifferentialExtension(R)
- differentiate : (%, NonNegativeInteger) -> % if R has FiniteFieldCategory or R has DifferentialRing and R has Field
- from DifferentialRing
- differentiate : (%, Symbol) -> % if R has PartialDifferentialRing(Symbol) and R has Field
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing(Symbol) and R has Field
- from PartialDifferentialRing(Symbol)
- discreteLog : % -> NonNegativeInteger if R has FiniteFieldCategory
- from FiniteFieldCategory
- discreteLog : (%, %) -> Union(NonNegativeInteger, "failed") if R has FiniteFieldCategory
- from FieldOfPrimeCharacteristic
- discriminant : () -> R
- from FramedAlgebra(R, UP)
- discriminant : Vector(%) -> R
- from FiniteRankAlgebra(R, UP)
- divide : (%, %) -> Record(quotient : %, remainder : %) if R has Field
- from EuclideanDomain
- enumerate : () -> List(%) if R has Finite
- from Finite
- euclideanSize : % -> NonNegativeInteger if R has Field
- from EuclideanDomain
- expressIdealMember : (List(%), %) -> Union(List(%), "failed") if R has Field
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed") if R has Field
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if R has Field
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed") if R has Field
- from EuclideanDomain
- factor : % -> Factored(%) if R has Field
- from UniqueFactorizationDomain
- factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit and R has Field or R has FiniteFieldCategory
- from PolynomialFactorizationExplicit
- factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit and R has Field or R has FiniteFieldCategory
- from PolynomialFactorizationExplicit
- factorsOfCyclicGroupSize : () -> List(Record(factor : Integer, exponent : NonNegativeInteger)) if R has FiniteFieldCategory
- from FiniteFieldCategory
- gcd : (%, %) -> % if R has Field
- from GcdDomain
- gcd : List(%) -> % if R has Field
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has Field
- from GcdDomain
- generator : () -> %
- from MonogenicAlgebra(R, UP)
- hash : % -> SingleInteger
- from Hashable
- hashUpdate! : (HashState, %) -> HashState
- from Hashable
- index : PositiveInteger -> % if R has Finite
- from Finite
- init : () -> % if R has FiniteFieldCategory
- from StepThrough
- inv : % -> % if R has Field
- from DivisionRing
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> % if R has Field
- from GcdDomain
- lcm : List(%) -> % if R has Field
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has Field
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- lift : % -> UP
- from MonogenicAlgebra(R, UP)
- lookup : % -> PositiveInteger if R has Finite
- from Finite
- minimalPolynomial : % -> UP if R has Field
- from FiniteRankAlgebra(R, UP)
- multiEuclidean : (List(%), %) -> Union(List(%), "failed") if R has Field
- from EuclideanDomain
- nextItem : % -> Union(%, "failed") if R has FiniteFieldCategory
- from StepThrough
- norm : % -> R
- from FiniteRankAlgebra(R, UP)
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : % -> OnePointCompletion(PositiveInteger) if R has FiniteFieldCategory
- from FieldOfPrimeCharacteristic
- order : % -> PositiveInteger if R has FiniteFieldCategory
- from FiniteFieldCategory
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- prime? : % -> Boolean if R has Field
- from UniqueFactorizationDomain
- primeFrobenius : % -> % if R has FiniteFieldCategory
- from FieldOfPrimeCharacteristic
- primeFrobenius : (%, NonNegativeInteger) -> % if R has FiniteFieldCategory
- from FieldOfPrimeCharacteristic
- primitive? : % -> Boolean if R has FiniteFieldCategory
- from FiniteFieldCategory
- primitiveElement : () -> % if R has FiniteFieldCategory
- from FiniteFieldCategory
- principalIdeal : List(%) -> Record(coef : List(%), generator : %) if R has Field
- from PrincipalIdealDomain
- quo : (%, %) -> % if R has Field
- from EuclideanDomain
- random : () -> % if R has Finite
- from Finite
- rank : () -> PositiveInteger
- from FiniteRankAlgebra(R, UP)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reduce : UP -> %
- from MonogenicAlgebra(R, UP)
- reduce : Fraction(UP) -> Union(%, "failed") if R has Field
- from MonogenicAlgebra(R, UP)
- reducedSystem : Matrix(%) -> Matrix(R)
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- regularRepresentation : % -> Matrix(R)
- from FramedAlgebra(R, UP)
- regularRepresentation : (%, Vector(%)) -> Matrix(R)
- from FiniteRankAlgebra(R, UP)
- rem : (%, %) -> % if R has Field
- from EuclideanDomain
- representationType : () -> Union("prime", "polynomial", "normal", "cyclic") if R has FiniteFieldCategory
- from FiniteFieldCategory
- represents : Vector(R) -> %
- from FramedModule(R)
- represents : (Vector(R), Vector(%)) -> %
- from FiniteRankAlgebra(R, UP)
- retract : % -> R
- from RetractableTo(R)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- size : () -> NonNegativeInteger if R has Finite
- from Finite
- sizeLess? : (%, %) -> Boolean if R has Field
- from EuclideanDomain
- smaller? : (%, %) -> Boolean if R has Finite
- from Comparable
- solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if R has PolynomialFactorizationExplicit and R has Field or R has FiniteFieldCategory
- from PolynomialFactorizationExplicit
- squareFree : % -> Factored(%) if R has Field
- from UniqueFactorizationDomain
- squareFreePart : % -> % if R has Field
- from UniqueFactorizationDomain
- squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit and R has Field or R has FiniteFieldCategory
- from PolynomialFactorizationExplicit
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- tableForDiscreteLogarithm : Integer -> Table(PositiveInteger, NonNegativeInteger) if R has FiniteFieldCategory
- from FiniteFieldCategory
- trace : % -> R
- from FiniteRankAlgebra(R, UP)
- traceMatrix : () -> Matrix(R)
- from FramedAlgebra(R, UP)
- traceMatrix : Vector(%) -> Matrix(R)
- from FiniteRankAlgebra(R, UP)
- unit? : % -> Boolean if R has Field
- from EntireRing
- unitCanonical : % -> % if R has Field
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has Field
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
ConvertibleTo(UP)
Module(Fraction(Integer))
PrincipalIdealDomain
NonAssociativeSemiRing
LeftModule(R)
BiModule(%, %)
ConvertibleTo(InputForm)
Field
canonicalUnitNormal
Rng
BiModule(R, R)
CoercibleFrom(Integer)
TwoSidedRecip
FullyRetractableTo(R)
SemiRing
EntireRing
NonAssociativeAlgebra(Fraction(Integer))
unitsKnown
FullyLinearlyExplicitOver(R)
NonAssociativeSemiRng
CharacteristicNonZero
SetCategory
MagmaWithUnit
noZeroDivisors
RetractableTo(Fraction(Integer))
RightModule(%)
UniqueFactorizationDomain
SemiGroup
RightModule(Fraction(Integer))
Magma
RightModule(R)
GcdDomain
IntegralDomain
LeftModule(%)
NonAssociativeRing
NonAssociativeAlgebra(%)
MonogenicAlgebra(R, UP)
PartialDifferentialRing(Symbol)
CharacteristicZero
Module(R)
CommutativeRing
Ring
Algebra(%)
DifferentialRing
FieldOfPrimeCharacteristic
DivisionRing
DifferentialExtension(R)
CancellationAbelianMonoid
EuclideanDomain
canonicalsClosed
RetractableTo(Integer)
CommutativeStar
AbelianMonoid
Comparable
Hashable
FiniteRankAlgebra(R, UP)
StepThrough
Module(%)
LinearlyExplicitOver(Integer)
FramedAlgebra(R, UP)
CoercibleTo(OutputForm)
SemiRng
Monoid
PolynomialFactorizationExplicit
FiniteFieldCategory
LeftOreRing
Algebra(R)
FramedModule(R)
Finite
Algebra(Fraction(Integer))
BasicType
RightModule(Integer)
LeftModule(Fraction(Integer))
AbelianSemiGroup
CoercibleFrom(Fraction(Integer))
LinearlyExplicitOver(R)
NonAssociativeRng
CoercibleFrom(R)
BiModule(Fraction(Integer), Fraction(Integer))
RetractableTo(R)
AbelianGroup
NonAssociativeAlgebra(R)