DistributedMultivariatePolynomial(vl, R)

gdpoly.spad line 258 [edit on github]

This type supports distributed multivariate polynomials whose variables are from a user specified list of symbols. The coefficient ring may be non commutative, but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.

* : (%, %) -> %
from Magma
* : (%, R) -> %
from RightModule(R)
* : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
from RightModule(Fraction(Integer))
* : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
from RightModule(Integer)
* : (R, %) -> %
from LeftModule(R)
* : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
from LeftModule(Fraction(Integer))
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, R) -> % if R has Field
from AbelianMonoidRing(R, DirectProduct(#(vl), NonNegativeInteger))
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
D : (%, List(OrderedVariableList(vl))) -> %
from PartialDifferentialRing(OrderedVariableList(vl))
D : (%, List(OrderedVariableList(vl)), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(OrderedVariableList(vl))
D : (%, OrderedVariableList(vl)) -> %
from PartialDifferentialRing(OrderedVariableList(vl))
D : (%, OrderedVariableList(vl), NonNegativeInteger) -> %
from PartialDifferentialRing(OrderedVariableList(vl))
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean if R has EntireRing
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
from FiniteAbelianMonoidRing(R, DirectProduct(#(vl), NonNegativeInteger))
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
charthRoot : % -> Union(%, "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit or R has CharacteristicNonZero
from PolynomialFactorizationExplicit
coefficient : (%, List(OrderedVariableList(vl)), List(NonNegativeInteger)) -> %
from MaybeSkewPolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
coefficient : (%, OrderedVariableList(vl), NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
coefficient : (%, DirectProduct(#(vl), NonNegativeInteger)) -> R
from AbelianMonoidRing(R, DirectProduct(#(vl), NonNegativeInteger))
coefficients : % -> List(R)
from FreeModuleCategory(R, DirectProduct(#(vl), NonNegativeInteger))
coerce : % -> % if R has CommutativeRing
from Algebra(%)
coerce : R -> %
from Algebra(R)
coerce : Fraction(Integer) -> % if R has Algebra(Fraction(Integer)) or R has RetractableTo(Fraction(Integer))
from Algebra(Fraction(Integer))
coerce : Integer -> %
from NonAssociativeRing
coerce : OrderedVariableList(vl) -> %
from CoercibleFrom(OrderedVariableList(vl))
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
construct : List(Record(k : DirectProduct(#(vl), NonNegativeInteger), c : R)) -> %
from IndexedProductCategory(R, DirectProduct(#(vl), NonNegativeInteger))
constructOrdered : List(Record(k : DirectProduct(#(vl), NonNegativeInteger), c : R)) -> %
from IndexedProductCategory(R, DirectProduct(#(vl), NonNegativeInteger))
content : (%, OrderedVariableList(vl)) -> % if R has GcdDomain
from PolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
content : % -> R if R has GcdDomain
from FiniteAbelianMonoidRing(R, DirectProduct(#(vl), NonNegativeInteger))
convert : % -> InputForm if R has ConvertibleTo(InputForm)
from ConvertibleTo(InputForm)
convert : % -> Pattern(Float) if R has ConvertibleTo(Pattern(Float))
from ConvertibleTo(Pattern(Float))
convert : % -> Pattern(Integer) if R has ConvertibleTo(Pattern(Integer))
from ConvertibleTo(Pattern(Integer))
degree : % -> DirectProduct(#(vl), NonNegativeInteger)
from AbelianMonoidRing(R, DirectProduct(#(vl), NonNegativeInteger))
degree : (%, List(OrderedVariableList(vl))) -> List(NonNegativeInteger)
from MaybeSkewPolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
degree : (%, OrderedVariableList(vl)) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
differentiate : (%, List(OrderedVariableList(vl))) -> %
from PartialDifferentialRing(OrderedVariableList(vl))
differentiate : (%, List(OrderedVariableList(vl)), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(OrderedVariableList(vl))
differentiate : (%, OrderedVariableList(vl)) -> %
from PartialDifferentialRing(OrderedVariableList(vl))
differentiate : (%, OrderedVariableList(vl), NonNegativeInteger) -> %
from PartialDifferentialRing(OrderedVariableList(vl))
discriminant : (%, OrderedVariableList(vl)) -> % if R has CommutativeRing
from PolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
eval : (%, %, %) -> %
from InnerEvalable(%, %)
eval : (%, Equation(%)) -> %
from Evalable(%)
eval : (%, List(%), List(%)) -> %
from InnerEvalable(%, %)
eval : (%, List(Equation(%))) -> %
from Evalable(%)
eval : (%, List(OrderedVariableList(vl)), List(%)) -> %
from InnerEvalable(OrderedVariableList(vl), %)
eval : (%, List(OrderedVariableList(vl)), List(R)) -> %
from InnerEvalable(OrderedVariableList(vl), R)
eval : (%, OrderedVariableList(vl), %) -> %
from InnerEvalable(OrderedVariableList(vl), %)
eval : (%, OrderedVariableList(vl), R) -> %
from InnerEvalable(OrderedVariableList(vl), R)
exquo : (%, %) -> Union(%, "failed") if R has EntireRing
from EntireRing
exquo : (%, R) -> Union(%, "failed") if R has EntireRing
from FiniteAbelianMonoidRing(R, DirectProduct(#(vl), NonNegativeInteger))
factor : % -> Factored(%) if R has PolynomialFactorizationExplicit
from UniqueFactorizationDomain
factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
fmecg : (%, DirectProduct(#(vl), NonNegativeInteger), R, %) -> %
from FiniteAbelianMonoidRing(R, DirectProduct(#(vl), NonNegativeInteger))
gcd : (%, %) -> % if R has GcdDomain
from GcdDomain
gcd : List(%) -> % if R has GcdDomain
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has GcdDomain
from PolynomialFactorizationExplicit
ground : % -> R
from FiniteAbelianMonoidRing(R, DirectProduct(#(vl), NonNegativeInteger))
ground? : % -> Boolean
from FiniteAbelianMonoidRing(R, DirectProduct(#(vl), NonNegativeInteger))
hash : % -> SingleInteger if R has Hashable
from Hashable
hashUpdate! : (HashState, %) -> HashState if R has Hashable
from Hashable
isExpt : % -> Union(Record(var : OrderedVariableList(vl), exponent : NonNegativeInteger), "failed")
from PolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
isPlus : % -> Union(List(%), "failed")
from PolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
isTimes : % -> Union(List(%), "failed")
from PolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
latex : % -> String
from SetCategory
lcm : (%, %) -> % if R has GcdDomain
from GcdDomain
lcm : List(%) -> % if R has GcdDomain
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has GcdDomain
from LeftOreRing
leadingCoefficient : % -> R
from IndexedProductCategory(R, DirectProduct(#(vl), NonNegativeInteger))
leadingMonomial : % -> %
from IndexedProductCategory(R, DirectProduct(#(vl), NonNegativeInteger))
leadingSupport : % -> DirectProduct(#(vl), NonNegativeInteger)
from IndexedProductCategory(R, DirectProduct(#(vl), NonNegativeInteger))
leadingTerm : % -> Record(k : DirectProduct(#(vl), NonNegativeInteger), c : R)
from IndexedProductCategory(R, DirectProduct(#(vl), NonNegativeInteger))
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
linearExtend : (Mapping(R, DirectProduct(#(vl), NonNegativeInteger)), %) -> R if R has CommutativeRing
from FreeModuleCategory(R, DirectProduct(#(vl), NonNegativeInteger))
listOfTerms : % -> List(Record(k : DirectProduct(#(vl), NonNegativeInteger), c : R))
from IndexedDirectProductCategory(R, DirectProduct(#(vl), NonNegativeInteger))
mainVariable : % -> Union(OrderedVariableList(vl), "failed")
from MaybeSkewPolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
map : (Mapping(R, R), %) -> %
from IndexedProductCategory(R, DirectProduct(#(vl), NonNegativeInteger))
mapExponents : (Mapping(DirectProduct(#(vl), NonNegativeInteger), DirectProduct(#(vl), NonNegativeInteger)), %) -> %
from FiniteAbelianMonoidRing(R, DirectProduct(#(vl), NonNegativeInteger))
minimumDegree : % -> DirectProduct(#(vl), NonNegativeInteger)
from FiniteAbelianMonoidRing(R, DirectProduct(#(vl), NonNegativeInteger))
minimumDegree : (%, List(OrderedVariableList(vl))) -> List(NonNegativeInteger)
from PolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
minimumDegree : (%, OrderedVariableList(vl)) -> NonNegativeInteger
from PolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
monicDivide : (%, %, OrderedVariableList(vl)) -> Record(quotient : %, remainder : %)
from PolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
monomial : (%, List(OrderedVariableList(vl)), List(NonNegativeInteger)) -> %
from MaybeSkewPolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
monomial : (%, OrderedVariableList(vl), NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
monomial : (R, DirectProduct(#(vl), NonNegativeInteger)) -> %
from IndexedProductCategory(R, DirectProduct(#(vl), NonNegativeInteger))
monomial? : % -> Boolean
from IndexedProductCategory(R, DirectProduct(#(vl), NonNegativeInteger))
monomials : % -> List(%)
from MaybeSkewPolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
multivariate : (SparseUnivariatePolynomial(%), OrderedVariableList(vl)) -> %
from PolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
multivariate : (SparseUnivariatePolynomial(R), OrderedVariableList(vl)) -> %
from PolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
numberOfMonomials : % -> NonNegativeInteger
from IndexedDirectProductCategory(R, DirectProduct(#(vl), NonNegativeInteger))
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if OrderedVariableList(vl) has PatternMatchable(Float) and R has PatternMatchable(Float)
from PatternMatchable(Float)
patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if OrderedVariableList(vl) has PatternMatchable(Integer) and R has PatternMatchable(Integer)
from PatternMatchable(Integer)
plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing or R has Algebra(Fraction(Integer))
from NonAssociativeAlgebra(%)
pomopo! : (%, R, DirectProduct(#(vl), NonNegativeInteger), %) -> %
from FiniteAbelianMonoidRing(R, DirectProduct(#(vl), NonNegativeInteger))
prime? : % -> Boolean if R has PolynomialFactorizationExplicit
from UniqueFactorizationDomain
primitiveMonomials : % -> List(%)
from MaybeSkewPolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
primitivePart : % -> % if R has GcdDomain
from PolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
primitivePart : (%, OrderedVariableList(vl)) -> % if R has GcdDomain
from PolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
recip : % -> Union(%, "failed")
from MagmaWithUnit
reducedSystem : Matrix(%) -> Matrix(R)
from LinearlyExplicitOver(R)
reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
from LinearlyExplicitOver(Integer)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
from LinearlyExplicitOver(R)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
from LinearlyExplicitOver(Integer)
reductum : % -> %
from IndexedProductCategory(R, DirectProduct(#(vl), NonNegativeInteger))
reorder : (%, List(Integer)) -> %

reorder(p, perm) applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial

resultant : (%, %, OrderedVariableList(vl)) -> % if R has CommutativeRing
from PolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
retract : % -> R
from RetractableTo(R)
retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retract : % -> Integer if R has RetractableTo(Integer)
from RetractableTo(Integer)
retract : % -> OrderedVariableList(vl)
from RetractableTo(OrderedVariableList(vl))
retractIfCan : % -> Union(R, "failed")
from RetractableTo(R)
retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
from RetractableTo(Integer)
retractIfCan : % -> Union(OrderedVariableList(vl), "failed")
from RetractableTo(OrderedVariableList(vl))
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
smaller? : (%, %) -> Boolean if R has Comparable
from Comparable
solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
squareFree : % -> Factored(%) if R has GcdDomain
from PolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
squareFreePart : % -> % if R has GcdDomain
from PolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
support : % -> List(DirectProduct(#(vl), NonNegativeInteger))
from FreeModuleCategory(R, DirectProduct(#(vl), NonNegativeInteger))
totalDegree : % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
totalDegree : (%, List(OrderedVariableList(vl))) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
totalDegreeSorted : (%, List(OrderedVariableList(vl))) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
unit? : % -> Boolean if R has EntireRing
from EntireRing
unitCanonical : % -> % if R has EntireRing
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
from EntireRing
univariate : (%, OrderedVariableList(vl)) -> SparseUnivariatePolynomial(%)
from PolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
univariate : % -> SparseUnivariatePolynomial(R)
from PolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
variables : % -> List(OrderedVariableList(vl))
from MaybeSkewPolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

CharacteristicNonZero

Module(Fraction(Integer))

NonAssociativeSemiRing

LeftModule(R)

BiModule(%, %)

ConvertibleTo(InputForm)

canonicalUnitNormal

Rng

PolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))

CoercibleFrom(Integer)

TwoSidedRecip

FullyRetractableTo(R)

SemiRing

EntireRing

NonAssociativeAlgebra(Fraction(Integer))

unitsKnown

FullyLinearlyExplicitOver(R)

PatternMatchable(Float)

SetCategory

CoercibleFrom(OrderedVariableList(vl))

CoercibleTo(OutputForm)

noZeroDivisors

RetractableTo(Fraction(Integer))

Magma

InnerEvalable(%, %)

SemiGroup

GcdDomain

IntegralDomain

LeftModule(%)

NonAssociativeRing

InnerEvalable(OrderedVariableList(vl), R)

UniqueFactorizationDomain

MaybeSkewPolynomialCategory(R, DirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))

AbelianMonoidRing(R, DirectProduct(#(vl), NonNegativeInteger))

CharacteristicZero

Module(R)

AbelianGroup

Algebra(%)

BiModule(R, R)

RightModule(Fraction(Integer))

Algebra(R)

LinearlyExplicitOver(R)

InnerEvalable(OrderedVariableList(vl), %)

RightModule(R)

NonAssociativeRng

CommutativeRing

NonAssociativeSemiRng

CancellationAbelianMonoid

RetractableTo(Integer)

CommutativeStar

VariablesCommuteWithCoefficients

AbelianMonoid

MagmaWithUnit

Comparable

RightModule(%)

AbelianProductCategory(R)

Hashable

Evalable(%)

FreeModuleCategory(R, DirectProduct(#(vl), NonNegativeInteger))

Module(%)

LinearlyExplicitOver(Integer)

ConvertibleTo(Pattern(Float))

SemiRng

IndexedDirectProductCategory(R, DirectProduct(#(vl), NonNegativeInteger))

Monoid

PolynomialFactorizationExplicit

NonAssociativeAlgebra(R)

LeftOreRing

NonAssociativeAlgebra(%)

Algebra(Fraction(Integer))

BasicType

Ring

RightModule(Integer)

FiniteAbelianMonoidRing(R, DirectProduct(#(vl), NonNegativeInteger))

AbelianSemiGroup

ConvertibleTo(Pattern(Integer))

CoercibleFrom(Fraction(Integer))

LeftModule(Fraction(Integer))

PatternMatchable(Integer)

PartialDifferentialRing(OrderedVariableList(vl))

CoercibleFrom(R)

BiModule(Fraction(Integer), Fraction(Integer))

RetractableTo(R)

IndexedProductCategory(R, DirectProduct(#(vl), NonNegativeInteger))

RetractableTo(OrderedVariableList(vl))