HomogeneousDistributedMultivariatePolynomial(vl, R)
gdpoly.spad line 288
[edit on github]
This type supports distributed multivariate polynomials whose variables are from a user specified list of symbols. The coefficient ring may be non commutative, but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
- from RightModule(Integer)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, R) -> % if R has Field
- from AbelianMonoidRing(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : (%, List(OrderedVariableList(vl))) -> %
- from PartialDifferentialRing(OrderedVariableList(vl))
- D : (%, List(OrderedVariableList(vl)), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(OrderedVariableList(vl))
- D : (%, OrderedVariableList(vl)) -> %
- from PartialDifferentialRing(OrderedVariableList(vl))
- D : (%, OrderedVariableList(vl), NonNegativeInteger) -> %
- from PartialDifferentialRing(OrderedVariableList(vl))
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if R has EntireRing
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- from FiniteAbelianMonoidRing(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- from CharacteristicNonZero
- coefficient : (%, List(OrderedVariableList(vl)), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- coefficient : (%, OrderedVariableList(vl), NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- coefficient : (%, HomogeneousDirectProduct(#(vl), NonNegativeInteger)) -> R
- from FreeModuleCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- coefficients : % -> List(R)
- from FreeModuleCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- coerce : % -> % if R has CommutativeRing
- from Algebra(%)
- coerce : R -> %
- from Algebra(R)
- coerce : Fraction(Integer) -> % if R has Algebra(Fraction(Integer)) or R has RetractableTo(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : OrderedVariableList(vl) -> %
- from CoercibleFrom(OrderedVariableList(vl))
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- construct : List(Record(k : HomogeneousDirectProduct(#(vl), NonNegativeInteger), c : R)) -> %
- from IndexedProductCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- constructOrdered : List(Record(k : HomogeneousDirectProduct(#(vl), NonNegativeInteger), c : R)) -> %
- from IndexedProductCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- content : (%, OrderedVariableList(vl)) -> % if R has GcdDomain
- from PolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- content : % -> R if R has GcdDomain
- from FiniteAbelianMonoidRing(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- convert : % -> InputForm if R has ConvertibleTo(InputForm)
- from ConvertibleTo(InputForm)
- convert : % -> Pattern(Float) if R has ConvertibleTo(Pattern(Float))
- from ConvertibleTo(Pattern(Float))
- convert : % -> Pattern(Integer) if R has ConvertibleTo(Pattern(Integer))
- from ConvertibleTo(Pattern(Integer))
- degree : % -> HomogeneousDirectProduct(#(vl), NonNegativeInteger)
- from AbelianMonoidRing(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- degree : (%, List(OrderedVariableList(vl))) -> List(NonNegativeInteger)
- from MaybeSkewPolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- degree : (%, OrderedVariableList(vl)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- differentiate : (%, List(OrderedVariableList(vl))) -> %
- from PartialDifferentialRing(OrderedVariableList(vl))
- differentiate : (%, List(OrderedVariableList(vl)), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(OrderedVariableList(vl))
- differentiate : (%, OrderedVariableList(vl)) -> %
- from PartialDifferentialRing(OrderedVariableList(vl))
- differentiate : (%, OrderedVariableList(vl), NonNegativeInteger) -> %
- from PartialDifferentialRing(OrderedVariableList(vl))
- discriminant : (%, OrderedVariableList(vl)) -> % if R has CommutativeRing
- from PolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- eval : (%, %, %) -> %
- from InnerEvalable(%, %)
- eval : (%, Equation(%)) -> %
- from Evalable(%)
- eval : (%, List(%), List(%)) -> %
- from InnerEvalable(%, %)
- eval : (%, List(Equation(%))) -> %
- from Evalable(%)
- eval : (%, List(OrderedVariableList(vl)), List(%)) -> %
- from InnerEvalable(OrderedVariableList(vl), %)
- eval : (%, List(OrderedVariableList(vl)), List(R)) -> %
- from InnerEvalable(OrderedVariableList(vl), R)
- eval : (%, OrderedVariableList(vl), %) -> %
- from InnerEvalable(OrderedVariableList(vl), %)
- eval : (%, OrderedVariableList(vl), R) -> %
- from InnerEvalable(OrderedVariableList(vl), R)
- exquo : (%, %) -> Union(%, "failed") if R has EntireRing
- from EntireRing
- exquo : (%, R) -> Union(%, "failed") if R has EntireRing
- from FiniteAbelianMonoidRing(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- factor : % -> Factored(%) if R has PolynomialFactorizationExplicit
- from UniqueFactorizationDomain
- factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- fmecg : (%, HomogeneousDirectProduct(#(vl), NonNegativeInteger), R, %) -> %
- from FiniteAbelianMonoidRing(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- gcd : (%, %) -> % if R has GcdDomain
- from GcdDomain
- gcd : List(%) -> % if R has GcdDomain
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has GcdDomain
- from PolynomialFactorizationExplicit
- ground : % -> R
- from FiniteAbelianMonoidRing(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- ground? : % -> Boolean
- from FiniteAbelianMonoidRing(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- hash : % -> SingleInteger if R has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if R has Hashable
- from Hashable
- isExpt : % -> Union(Record(var : OrderedVariableList(vl), exponent : NonNegativeInteger), "failed")
- from PolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- isPlus : % -> Union(List(%), "failed")
- from PolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- isTimes : % -> Union(List(%), "failed")
- from PolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> % if R has GcdDomain
- from GcdDomain
- lcm : List(%) -> % if R has GcdDomain
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has GcdDomain
- from LeftOreRing
- leadingCoefficient : % -> R
- from IndexedProductCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- leadingMonomial : % -> %
- from IndexedProductCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- leadingSupport : % -> HomogeneousDirectProduct(#(vl), NonNegativeInteger)
- from IndexedProductCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- leadingTerm : % -> Record(k : HomogeneousDirectProduct(#(vl), NonNegativeInteger), c : R)
- from IndexedProductCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- linearExtend : (Mapping(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger)), %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- listOfTerms : % -> List(Record(k : HomogeneousDirectProduct(#(vl), NonNegativeInteger), c : R))
- from IndexedDirectProductCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- mainVariable : % -> Union(OrderedVariableList(vl), "failed")
- from MaybeSkewPolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- mapExponents : (Mapping(HomogeneousDirectProduct(#(vl), NonNegativeInteger), HomogeneousDirectProduct(#(vl), NonNegativeInteger)), %) -> %
- from FiniteAbelianMonoidRing(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- minimumDegree : % -> HomogeneousDirectProduct(#(vl), NonNegativeInteger)
- from FiniteAbelianMonoidRing(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- minimumDegree : (%, List(OrderedVariableList(vl))) -> List(NonNegativeInteger)
- from PolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- minimumDegree : (%, OrderedVariableList(vl)) -> NonNegativeInteger
- from PolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- monicDivide : (%, %, OrderedVariableList(vl)) -> Record(quotient : %, remainder : %)
- from PolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- monomial : (%, List(OrderedVariableList(vl)), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- monomial : (%, OrderedVariableList(vl), NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- monomial : (R, HomogeneousDirectProduct(#(vl), NonNegativeInteger)) -> %
- from IndexedProductCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- monomial? : % -> Boolean
- from IndexedProductCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- monomials : % -> List(%)
- from MaybeSkewPolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- multivariate : (SparseUnivariatePolynomial(%), OrderedVariableList(vl)) -> %
- from PolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- multivariate : (SparseUnivariatePolynomial(R), OrderedVariableList(vl)) -> %
- from PolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if OrderedVariableList(vl) has PatternMatchable(Float) and R has PatternMatchable(Float)
- from PatternMatchable(Float)
- patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if OrderedVariableList(vl) has PatternMatchable(Integer) and R has PatternMatchable(Integer)
- from PatternMatchable(Integer)
- plenaryPower : (%, PositiveInteger) -> % if R has Algebra(Fraction(Integer)) or R has CommutativeRing
- from NonAssociativeAlgebra(%)
- pomopo! : (%, R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), %) -> %
- from FiniteAbelianMonoidRing(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- prime? : % -> Boolean if R has PolynomialFactorizationExplicit
- from UniqueFactorizationDomain
- primitiveMonomials : % -> List(%)
- from MaybeSkewPolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- primitivePart : % -> % if R has GcdDomain
- from PolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- primitivePart : (%, OrderedVariableList(vl)) -> % if R has GcdDomain
- from PolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reducedSystem : Matrix(%) -> Matrix(R)
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reductum : % -> %
- from IndexedProductCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- reorder : (%, List(Integer)) -> %
reorder(p, perm)
applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial
- resultant : (%, %, OrderedVariableList(vl)) -> % if R has CommutativeRing
- from PolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- retract : % -> R
- from RetractableTo(R)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retract : % -> OrderedVariableList(vl)
- from RetractableTo(OrderedVariableList(vl))
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(OrderedVariableList(vl), "failed")
- from RetractableTo(OrderedVariableList(vl))
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- squareFree : % -> Factored(%) if R has GcdDomain
- from PolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- squareFreePart : % -> % if R has GcdDomain
- from PolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- support : % -> List(HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- from FreeModuleCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
- totalDegree : % -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- totalDegree : (%, List(OrderedVariableList(vl))) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- totalDegreeSorted : (%, List(OrderedVariableList(vl))) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- unit? : % -> Boolean if R has EntireRing
- from EntireRing
- unitCanonical : % -> % if R has EntireRing
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
- from EntireRing
- univariate : (%, OrderedVariableList(vl)) -> SparseUnivariatePolynomial(%)
- from PolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- univariate : % -> SparseUnivariatePolynomial(R)
- from PolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- variables : % -> List(OrderedVariableList(vl))
- from MaybeSkewPolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CharacteristicNonZero
Module(Fraction(Integer))
NonAssociativeSemiRing
ConvertibleTo(Pattern(Integer))
LeftModule(R)
BiModule(%, %)
ConvertibleTo(InputForm)
canonicalUnitNormal
Rng
CoercibleFrom(Integer)
TwoSidedRecip
FullyRetractableTo(R)
SemiRing
EntireRing
NonAssociativeAlgebra(Fraction(Integer))
unitsKnown
FullyLinearlyExplicitOver(R)
noZeroDivisors
RetractableTo(Fraction(Integer))
UniqueFactorizationDomain
InnerEvalable(%, %)
SemiGroup
Magma
GcdDomain
IntegralDomain
PartialDifferentialRing(OrderedVariableList(vl))
LeftModule(%)
AbelianMonoidRing(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
PatternMatchable(Float)
CharacteristicZero
Module(R)
Algebra(%)
PolynomialFactorizationExplicit
BiModule(R, R)
RightModule(Fraction(Integer))
Algebra(R)
LinearlyExplicitOver(R)
InnerEvalable(OrderedVariableList(vl), %)
RightModule(R)
CommutativeRing
NonAssociativeSemiRng
CancellationAbelianMonoid
MaybeSkewPolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
InnerEvalable(OrderedVariableList(vl), R)
Comparable
RetractableTo(Integer)
SetCategory
CommutativeStar
VariablesCommuteWithCoefficients
AbelianMonoid
MagmaWithUnit
IndexedDirectProductCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
RightModule(%)
AbelianProductCategory(R)
Hashable
Evalable(%)
Module(%)
CoercibleTo(OutputForm)
PolynomialCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger), OrderedVariableList(vl))
ConvertibleTo(Pattern(Float))
SemiRng
LinearlyExplicitOver(Integer)
Monoid
FreeModuleCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
NonAssociativeAlgebra(R)
LeftOreRing
NonAssociativeAlgebra(%)
Algebra(Fraction(Integer))
CoercibleFrom(OrderedVariableList(vl))
BasicType
Ring
RightModule(Integer)
AbelianSemiGroup
LeftModule(Fraction(Integer))
IndexedProductCategory(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))
CoercibleFrom(Fraction(Integer))
NonAssociativeRng
NonAssociativeRing
CoercibleFrom(R)
BiModule(Fraction(Integer), Fraction(Integer))
RetractableTo(R)
PatternMatchable(Integer)
RetractableTo(OrderedVariableList(vl))
AbelianGroup
FiniteAbelianMonoidRing(R, HomogeneousDirectProduct(#(vl), NonNegativeInteger))