DistributedJetBundlePolynomial(R, JB, LJV, E)
jet.spad line 6529
[edit on github]
DistributedJetBundlePolynomial implements polynomials in a distributed representation. The unknowns come from a finite list of jet variables. The implementation is basically a copy of the one of GeneralDistributedMultivariatePolynomial.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
- from RightModule(Integer)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, R) -> % if R has Field
- from AbelianMonoidRing(R, E)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : (%, JB) -> %
- from PartialDifferentialRing(JB)
- D : (%, JB, NonNegativeInteger) -> %
- from PartialDifferentialRing(JB)
- D : (%, List(JB)) -> %
- from PartialDifferentialRing(JB)
- D : (%, List(JB), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(JB)
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if R has EntireRing
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- from FiniteAbelianMonoidRing(R, E)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- from CharacteristicNonZero
- coefficient : (%, JB, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, E, JB)
- coefficient : (%, List(JB), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(R, E, JB)
- coefficient : (%, E) -> R
- from AbelianMonoidRing(R, E)
- coefficients : % -> List(R)
- from FreeModuleCategory(R, E)
- coerce : % -> % if R has CommutativeRing
- from Algebra(%)
- coerce : JB -> %
- from CoercibleFrom(JB)
- coerce : R -> %
- from Algebra(R)
- coerce : Fraction(Integer) -> % if R has Algebra(Fraction(Integer)) or R has RetractableTo(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- const : % -> R
const(p)
coerces a polynomial into an element of the coefficient ring, if it is constant. Otherwise an error occurs.
- construct : List(Record(k : E, c : R)) -> %
- from IndexedProductCategory(R, E)
- constructOrdered : List(Record(k : E, c : R)) -> %
- from IndexedProductCategory(R, E)
- content : (%, JB) -> % if R has GcdDomain
- from PolynomialCategory(R, E, JB)
- content : % -> R if R has GcdDomain
- from FiniteAbelianMonoidRing(R, E)
- convert : JetBundlePolynomial(R, JB) -> %
convert(p)
converts a polynomial p
in recursive representation into a polynomial in distributive representation.
- convert : % -> InputForm if R has ConvertibleTo(InputForm) and JB has ConvertibleTo(InputForm)
- from ConvertibleTo(InputForm)
- convert : % -> JetBundlePolynomial(R, JB)
convert(p)
converts a polynomial p
in distributive representation into a polynomial in recursive representation.
- convert : % -> Pattern(Float) if R has ConvertibleTo(Pattern(Float)) and JB has ConvertibleTo(Pattern(Float))
- from ConvertibleTo(Pattern(Float))
- convert : % -> Pattern(Integer) if R has ConvertibleTo(Pattern(Integer)) and JB has ConvertibleTo(Pattern(Integer))
- from ConvertibleTo(Pattern(Integer))
- degree : % -> E
- from AbelianMonoidRing(R, E)
- degree : (%, List(JB)) -> List(NonNegativeInteger)
- from MaybeSkewPolynomialCategory(R, E, JB)
- degree : (%, JB) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, E, JB)
- differentiate : (%, JB) -> %
- from PartialDifferentialRing(JB)
- differentiate : (%, JB, NonNegativeInteger) -> %
- from PartialDifferentialRing(JB)
- differentiate : (%, List(JB)) -> %
- from PartialDifferentialRing(JB)
- differentiate : (%, List(JB), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(JB)
- discriminant : (%, JB) -> % if R has CommutativeRing
- from PolynomialCategory(R, E, JB)
- eval : (%, %, %) -> %
- from InnerEvalable(%, %)
- eval : (%, JB, %) -> %
- from InnerEvalable(JB, %)
- eval : (%, JB, R) -> %
- from InnerEvalable(JB, R)
- eval : (%, Equation(%)) -> %
- from Evalable(%)
- eval : (%, List(%), List(%)) -> %
- from InnerEvalable(%, %)
- eval : (%, List(JB), List(%)) -> %
- from InnerEvalable(JB, %)
- eval : (%, List(JB), List(R)) -> %
- from InnerEvalable(JB, R)
- eval : (%, List(Equation(%))) -> %
- from Evalable(%)
- exquo : (%, %) -> Union(%, "failed") if R has EntireRing
- from EntireRing
- exquo : (%, R) -> Union(%, "failed") if R has EntireRing
- from FiniteAbelianMonoidRing(R, E)
- factor : % -> Factored(%) if R has PolynomialFactorizationExplicit
- from UniqueFactorizationDomain
- factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- fmecg : (%, E, R, %) -> %
- from FiniteAbelianMonoidRing(R, E)
- gcd : (%, %) -> % if R has GcdDomain
- from GcdDomain
- gcd : List(%) -> % if R has GcdDomain
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has GcdDomain
- from PolynomialFactorizationExplicit
- groebner : List(%) -> List(%) if R has GcdDomain
groebner(lp)
computes a Groebner basis for the ideal generated by the list of polynomials lp
.
- ground : % -> R
- from FiniteAbelianMonoidRing(R, E)
- ground? : % -> Boolean
- from FiniteAbelianMonoidRing(R, E)
- hash : % -> SingleInteger if JB has Hashable and R has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if JB has Hashable and R has Hashable
- from Hashable
- isExpt : % -> Union(Record(var : JB, exponent : NonNegativeInteger), "failed")
- from PolynomialCategory(R, E, JB)
- isPlus : % -> Union(List(%), "failed")
- from PolynomialCategory(R, E, JB)
- isTimes : % -> Union(List(%), "failed")
- from PolynomialCategory(R, E, JB)
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> % if R has GcdDomain
- from GcdDomain
- lcm : List(%) -> % if R has GcdDomain
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has GcdDomain
- from LeftOreRing
- leadingCoefficient : % -> R
- from IndexedProductCategory(R, E)
- leadingMonomial : % -> %
- from IndexedProductCategory(R, E)
- leadingSupport : % -> E
- from IndexedProductCategory(R, E)
- leadingTerm : % -> Record(k : E, c : R)
- from IndexedProductCategory(R, E)
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- linearExtend : (Mapping(R, E), %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, E)
- listOfTerms : % -> List(Record(k : E, c : R))
- from IndexedDirectProductCategory(R, E)
- mainVariable : % -> Union(JB, "failed")
- from MaybeSkewPolynomialCategory(R, E, JB)
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, E)
- mapExponents : (Mapping(E, E), %) -> %
- from FiniteAbelianMonoidRing(R, E)
- minimumDegree : % -> E
- from FiniteAbelianMonoidRing(R, E)
- minimumDegree : (%, List(JB)) -> List(NonNegativeInteger)
- from PolynomialCategory(R, E, JB)
- minimumDegree : (%, JB) -> NonNegativeInteger
- from PolynomialCategory(R, E, JB)
- monicDivide : (%, %, JB) -> Record(quotient : %, remainder : %)
- from PolynomialCategory(R, E, JB)
- monomial : (%, JB, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, E, JB)
- monomial : (%, List(JB), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(R, E, JB)
- monomial : (R, E) -> %
- from IndexedProductCategory(R, E)
- monomial? : % -> Boolean
- from IndexedProductCategory(R, E)
- monomials : % -> List(%)
- from MaybeSkewPolynomialCategory(R, E, JB)
- multivariate : (SparseUnivariatePolynomial(%), JB) -> %
- from PolynomialCategory(R, E, JB)
- multivariate : (SparseUnivariatePolynomial(R), JB) -> %
- from PolynomialCategory(R, E, JB)
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, E)
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if JB has PatternMatchable(Float) and R has PatternMatchable(Float)
- from PatternMatchable(Float)
- patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if JB has PatternMatchable(Integer) and R has PatternMatchable(Integer)
- from PatternMatchable(Integer)
- plenaryPower : (%, PositiveInteger) -> % if R has Algebra(Fraction(Integer)) or R has CommutativeRing
- from NonAssociativeAlgebra(%)
- pomopo! : (%, R, E, %) -> %
- from FiniteAbelianMonoidRing(R, E)
- prime? : % -> Boolean if R has PolynomialFactorizationExplicit
- from UniqueFactorizationDomain
- primitiveMonomials : % -> List(%)
- from MaybeSkewPolynomialCategory(R, E, JB)
- primitivePart : % -> % if R has GcdDomain
- from PolynomialCategory(R, E, JB)
- primitivePart : (%, JB) -> % if R has GcdDomain
- from PolynomialCategory(R, E, JB)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reducedSystem : Matrix(%) -> Matrix(R)
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reductum : % -> %
- from IndexedProductCategory(R, E)
- resultant : (%, %, JB) -> % if R has CommutativeRing
- from PolynomialCategory(R, E, JB)
- retract : % -> JB
- from RetractableTo(JB)
- retract : % -> R
- from RetractableTo(R)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(JB, "failed")
- from RetractableTo(JB)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- squareFree : % -> Factored(%) if R has GcdDomain
- from PolynomialCategory(R, E, JB)
- squareFreePart : % -> % if R has GcdDomain
- from PolynomialCategory(R, E, JB)
- squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- support : % -> List(E)
- from FreeModuleCategory(R, E)
- totalDegree : % -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, E, JB)
- totalDegree : (%, List(JB)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, E, JB)
- totalDegreeSorted : (%, List(JB)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, E, JB)
- unit? : % -> Boolean if R has EntireRing
- from EntireRing
- unitCanonical : % -> % if R has EntireRing
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
- from EntireRing
- univariate : (%, JB) -> SparseUnivariatePolynomial(%)
- from PolynomialCategory(R, E, JB)
- univariate : % -> SparseUnivariatePolynomial(R)
- from PolynomialCategory(R, E, JB)
- variables : % -> List(JB)
- from MaybeSkewPolynomialCategory(R, E, JB)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
PolynomialCategory(R, E, JB)
CharacteristicNonZero
Module(Fraction(Integer))
NonAssociativeSemiRing
LeftModule(R)
BiModule(%, %)
canonicalUnitNormal
Rng
CoercibleFrom(Integer)
TwoSidedRecip
FullyRetractableTo(R)
SemiRing
EntireRing
NonAssociativeAlgebra(Fraction(Integer))
unitsKnown
FullyLinearlyExplicitOver(R)
AbelianMonoidRing(R, E)
noZeroDivisors
CoercibleFrom(JB)
UniqueFactorizationDomain
InnerEvalable(%, %)
SemiGroup
Magma
GcdDomain
IntegralDomain
ConvertibleTo(InputForm)
LeftModule(%)
NonAssociativeRing
PatternMatchable(Float)
IndexedProductCategory(R, E)
CharacteristicZero
MaybeSkewPolynomialCategory(R, E, JB)
BasicType
Module(R)
CoercibleFrom(Fraction(Integer))
Algebra(%)
BiModule(R, R)
RightModule(Fraction(Integer))
Algebra(R)
FreeModuleCategory(R, E)
RightModule(R)
CommutativeRing
NonAssociativeSemiRng
CancellationAbelianMonoid
Comparable
RetractableTo(Integer)
RetractableTo(JB)
CommutativeStar
VariablesCommuteWithCoefficients
AbelianMonoid
RetractableTo(Fraction(Integer))
MagmaWithUnit
RightModule(%)
AbelianProductCategory(R)
Hashable
Evalable(%)
LinearlyExplicitOver(R)
Module(%)
CoercibleTo(OutputForm)
FiniteAbelianMonoidRing(R, E)
ConvertibleTo(Pattern(Float))
SemiRng
LinearlyExplicitOver(Integer)
Monoid
PolynomialFactorizationExplicit
NonAssociativeAlgebra(R)
LeftOreRing
NonAssociativeAlgebra(%)
Algebra(Fraction(Integer))
IndexedDirectProductCategory(R, E)
Ring
RightModule(Integer)
AbelianSemiGroup
SetCategory
InnerEvalable(JB, %)
PartialDifferentialRing(JB)
LeftModule(Fraction(Integer))
NonAssociativeRng
CoercibleFrom(R)
BiModule(Fraction(Integer), Fraction(Integer))
InnerEvalable(JB, R)
RetractableTo(R)
PatternMatchable(Integer)
ConvertibleTo(Pattern(Integer))
AbelianGroup