DistributedJetBundlePolynomial(R, JB, LJV, E)

jet.spad line 6529 [edit on github]

DistributedJetBundlePolynomial implements polynomials in a distributed representation. The unknowns come from a finite list of jet variables. The implementation is basically a copy of the one of GeneralDistributedMultivariatePolynomial.

* : (%, %) -> %
from Magma
* : (%, R) -> %
from RightModule(R)
* : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
from RightModule(Fraction(Integer))
* : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
from RightModule(Integer)
* : (R, %) -> %
from LeftModule(R)
* : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
from LeftModule(Fraction(Integer))
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, R) -> % if R has Field
from AbelianMonoidRing(R, E)
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
D : (%, JB) -> %
from PartialDifferentialRing(JB)
D : (%, JB, NonNegativeInteger) -> %
from PartialDifferentialRing(JB)
D : (%, List(JB)) -> %
from PartialDifferentialRing(JB)
D : (%, List(JB), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(JB)
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean if R has EntireRing
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
from FiniteAbelianMonoidRing(R, E)
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
from CharacteristicNonZero
coefficient : (%, JB, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, E, JB)
coefficient : (%, List(JB), List(NonNegativeInteger)) -> %
from MaybeSkewPolynomialCategory(R, E, JB)
coefficient : (%, E) -> R
from AbelianMonoidRing(R, E)
coefficients : % -> List(R)
from FreeModuleCategory(R, E)
coerce : % -> % if R has CommutativeRing
from Algebra(%)
coerce : JB -> %
from CoercibleFrom(JB)
coerce : R -> %
from Algebra(R)
coerce : Fraction(Integer) -> % if R has Algebra(Fraction(Integer)) or R has RetractableTo(Fraction(Integer))
from Algebra(Fraction(Integer))
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
const : % -> R

const(p) coerces a polynomial into an element of the coefficient ring, if it is constant. Otherwise an error occurs.

construct : List(Record(k : E, c : R)) -> %
from IndexedProductCategory(R, E)
constructOrdered : List(Record(k : E, c : R)) -> %
from IndexedProductCategory(R, E)
content : (%, JB) -> % if R has GcdDomain
from PolynomialCategory(R, E, JB)
content : % -> R if R has GcdDomain
from FiniteAbelianMonoidRing(R, E)
convert : JetBundlePolynomial(R, JB) -> %

convert(p) converts a polynomial p in recursive representation into a polynomial in distributive representation.

convert : % -> InputForm if R has ConvertibleTo(InputForm) and JB has ConvertibleTo(InputForm)
from ConvertibleTo(InputForm)
convert : % -> JetBundlePolynomial(R, JB)

convert(p) converts a polynomial p in distributive representation into a polynomial in recursive representation.

convert : % -> Pattern(Float) if R has ConvertibleTo(Pattern(Float)) and JB has ConvertibleTo(Pattern(Float))
from ConvertibleTo(Pattern(Float))
convert : % -> Pattern(Integer) if R has ConvertibleTo(Pattern(Integer)) and JB has ConvertibleTo(Pattern(Integer))
from ConvertibleTo(Pattern(Integer))
degree : % -> E
from AbelianMonoidRing(R, E)
degree : (%, List(JB)) -> List(NonNegativeInteger)
from MaybeSkewPolynomialCategory(R, E, JB)
degree : (%, JB) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, JB)
differentiate : (%, JB) -> %
from PartialDifferentialRing(JB)
differentiate : (%, JB, NonNegativeInteger) -> %
from PartialDifferentialRing(JB)
differentiate : (%, List(JB)) -> %
from PartialDifferentialRing(JB)
differentiate : (%, List(JB), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(JB)
discriminant : (%, JB) -> % if R has CommutativeRing
from PolynomialCategory(R, E, JB)
eval : (%, %, %) -> %
from InnerEvalable(%, %)
eval : (%, JB, %) -> %
from InnerEvalable(JB, %)
eval : (%, JB, R) -> %
from InnerEvalable(JB, R)
eval : (%, Equation(%)) -> %
from Evalable(%)
eval : (%, List(%), List(%)) -> %
from InnerEvalable(%, %)
eval : (%, List(JB), List(%)) -> %
from InnerEvalable(JB, %)
eval : (%, List(JB), List(R)) -> %
from InnerEvalable(JB, R)
eval : (%, List(Equation(%))) -> %
from Evalable(%)
exquo : (%, %) -> Union(%, "failed") if R has EntireRing
from EntireRing
exquo : (%, R) -> Union(%, "failed") if R has EntireRing
from FiniteAbelianMonoidRing(R, E)
factor : % -> Factored(%) if R has PolynomialFactorizationExplicit
from UniqueFactorizationDomain
factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
fmecg : (%, E, R, %) -> %
from FiniteAbelianMonoidRing(R, E)
gcd : (%, %) -> % if R has GcdDomain
from GcdDomain
gcd : List(%) -> % if R has GcdDomain
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has GcdDomain
from PolynomialFactorizationExplicit
groebner : List(%) -> List(%) if R has GcdDomain

groebner(lp) computes a Groebner basis for the ideal generated by the list of polynomials lp.

ground : % -> R
from FiniteAbelianMonoidRing(R, E)
ground? : % -> Boolean
from FiniteAbelianMonoidRing(R, E)
hash : % -> SingleInteger if JB has Hashable and R has Hashable
from Hashable
hashUpdate! : (HashState, %) -> HashState if JB has Hashable and R has Hashable
from Hashable
isExpt : % -> Union(Record(var : JB, exponent : NonNegativeInteger), "failed")
from PolynomialCategory(R, E, JB)
isPlus : % -> Union(List(%), "failed")
from PolynomialCategory(R, E, JB)
isTimes : % -> Union(List(%), "failed")
from PolynomialCategory(R, E, JB)
latex : % -> String
from SetCategory
lcm : (%, %) -> % if R has GcdDomain
from GcdDomain
lcm : List(%) -> % if R has GcdDomain
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has GcdDomain
from LeftOreRing
leadingCoefficient : % -> R
from IndexedProductCategory(R, E)
leadingMonomial : % -> %
from IndexedProductCategory(R, E)
leadingSupport : % -> E
from IndexedProductCategory(R, E)
leadingTerm : % -> Record(k : E, c : R)
from IndexedProductCategory(R, E)
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
linearExtend : (Mapping(R, E), %) -> R if R has CommutativeRing
from FreeModuleCategory(R, E)
listOfTerms : % -> List(Record(k : E, c : R))
from IndexedDirectProductCategory(R, E)
mainVariable : % -> Union(JB, "failed")
from MaybeSkewPolynomialCategory(R, E, JB)
map : (Mapping(R, R), %) -> %
from IndexedProductCategory(R, E)
mapExponents : (Mapping(E, E), %) -> %
from FiniteAbelianMonoidRing(R, E)
minimumDegree : % -> E
from FiniteAbelianMonoidRing(R, E)
minimumDegree : (%, List(JB)) -> List(NonNegativeInteger)
from PolynomialCategory(R, E, JB)
minimumDegree : (%, JB) -> NonNegativeInteger
from PolynomialCategory(R, E, JB)
monicDivide : (%, %, JB) -> Record(quotient : %, remainder : %)
from PolynomialCategory(R, E, JB)
monomial : (%, JB, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, E, JB)
monomial : (%, List(JB), List(NonNegativeInteger)) -> %
from MaybeSkewPolynomialCategory(R, E, JB)
monomial : (R, E) -> %
from IndexedProductCategory(R, E)
monomial? : % -> Boolean
from IndexedProductCategory(R, E)
monomials : % -> List(%)
from MaybeSkewPolynomialCategory(R, E, JB)
multivariate : (SparseUnivariatePolynomial(%), JB) -> %
from PolynomialCategory(R, E, JB)
multivariate : (SparseUnivariatePolynomial(R), JB) -> %
from PolynomialCategory(R, E, JB)
numberOfMonomials : % -> NonNegativeInteger
from IndexedDirectProductCategory(R, E)
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if JB has PatternMatchable(Float) and R has PatternMatchable(Float)
from PatternMatchable(Float)
patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if JB has PatternMatchable(Integer) and R has PatternMatchable(Integer)
from PatternMatchable(Integer)
plenaryPower : (%, PositiveInteger) -> % if R has Algebra(Fraction(Integer)) or R has CommutativeRing
from NonAssociativeAlgebra(%)
pomopo! : (%, R, E, %) -> %
from FiniteAbelianMonoidRing(R, E)
prime? : % -> Boolean if R has PolynomialFactorizationExplicit
from UniqueFactorizationDomain
primitiveMonomials : % -> List(%)
from MaybeSkewPolynomialCategory(R, E, JB)
primitivePart : % -> % if R has GcdDomain
from PolynomialCategory(R, E, JB)
primitivePart : (%, JB) -> % if R has GcdDomain
from PolynomialCategory(R, E, JB)
recip : % -> Union(%, "failed")
from MagmaWithUnit
reducedSystem : Matrix(%) -> Matrix(R)
from LinearlyExplicitOver(R)
reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
from LinearlyExplicitOver(Integer)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
from LinearlyExplicitOver(R)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
from LinearlyExplicitOver(Integer)
reductum : % -> %
from IndexedProductCategory(R, E)
resultant : (%, %, JB) -> % if R has CommutativeRing
from PolynomialCategory(R, E, JB)
retract : % -> JB
from RetractableTo(JB)
retract : % -> R
from RetractableTo(R)
retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retract : % -> Integer if R has RetractableTo(Integer)
from RetractableTo(Integer)
retractIfCan : % -> Union(JB, "failed")
from RetractableTo(JB)
retractIfCan : % -> Union(R, "failed")
from RetractableTo(R)
retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
from RetractableTo(Integer)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
smaller? : (%, %) -> Boolean if R has Comparable
from Comparable
solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
squareFree : % -> Factored(%) if R has GcdDomain
from PolynomialCategory(R, E, JB)
squareFreePart : % -> % if R has GcdDomain
from PolynomialCategory(R, E, JB)
squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
support : % -> List(E)
from FreeModuleCategory(R, E)
totalDegree : % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, JB)
totalDegree : (%, List(JB)) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, JB)
totalDegreeSorted : (%, List(JB)) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, E, JB)
unit? : % -> Boolean if R has EntireRing
from EntireRing
unitCanonical : % -> % if R has EntireRing
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
from EntireRing
univariate : (%, JB) -> SparseUnivariatePolynomial(%)
from PolynomialCategory(R, E, JB)
univariate : % -> SparseUnivariatePolynomial(R)
from PolynomialCategory(R, E, JB)
variables : % -> List(JB)
from MaybeSkewPolynomialCategory(R, E, JB)
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

PolynomialCategory(R, E, JB)

CharacteristicNonZero

Module(Fraction(Integer))

NonAssociativeSemiRing

LeftModule(R)

BiModule(%, %)

canonicalUnitNormal

Rng

CoercibleFrom(Integer)

TwoSidedRecip

FullyRetractableTo(R)

SemiRing

EntireRing

NonAssociativeAlgebra(Fraction(Integer))

unitsKnown

FullyLinearlyExplicitOver(R)

AbelianMonoidRing(R, E)

noZeroDivisors

CoercibleFrom(JB)

UniqueFactorizationDomain

InnerEvalable(%, %)

SemiGroup

Magma

GcdDomain

IntegralDomain

ConvertibleTo(InputForm)

LeftModule(%)

NonAssociativeRing

PatternMatchable(Float)

IndexedProductCategory(R, E)

CharacteristicZero

MaybeSkewPolynomialCategory(R, E, JB)

BasicType

Module(R)

CoercibleFrom(Fraction(Integer))

Algebra(%)

BiModule(R, R)

RightModule(Fraction(Integer))

Algebra(R)

FreeModuleCategory(R, E)

RightModule(R)

CommutativeRing

NonAssociativeSemiRng

CancellationAbelianMonoid

Comparable

RetractableTo(Integer)

RetractableTo(JB)

CommutativeStar

VariablesCommuteWithCoefficients

AbelianMonoid

RetractableTo(Fraction(Integer))

MagmaWithUnit

RightModule(%)

AbelianProductCategory(R)

Hashable

Evalable(%)

LinearlyExplicitOver(R)

Module(%)

CoercibleTo(OutputForm)

FiniteAbelianMonoidRing(R, E)

ConvertibleTo(Pattern(Float))

SemiRng

LinearlyExplicitOver(Integer)

Monoid

PolynomialFactorizationExplicit

NonAssociativeAlgebra(R)

LeftOreRing

NonAssociativeAlgebra(%)

Algebra(Fraction(Integer))

IndexedDirectProductCategory(R, E)

Ring

RightModule(Integer)

AbelianSemiGroup

SetCategory

InnerEvalable(JB, %)

PartialDifferentialRing(JB)

LeftModule(Fraction(Integer))

NonAssociativeRng

CoercibleFrom(R)

BiModule(Fraction(Integer), Fraction(Integer))

InnerEvalable(JB, R)

RetractableTo(R)

PatternMatchable(Integer)

ConvertibleTo(Pattern(Integer))

AbelianGroup