JetBundlePolynomial(R, JB)

jet.spad line 6455 [edit on github]

JetBundlePolynomial implements polynomial sections over a jet bundle. The order is not fixed, thus jet variables of any order can appear.

* : (%, %) -> %
from Magma
* : (%, R) -> %
from RightModule(R)
* : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
from RightModule(Fraction(Integer))
* : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
from RightModule(Integer)
* : (R, %) -> %
from LeftModule(R)
* : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
from LeftModule(Fraction(Integer))
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, R) -> % if R has Field
from AbelianMonoidRing(R, IndexedExponents(JB))
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
D : (%, JB) -> %
from PartialDifferentialRing(JB)
D : (%, JB, NonNegativeInteger) -> %
from PartialDifferentialRing(JB)
D : (%, List(JB)) -> %
from PartialDifferentialRing(JB)
D : (%, List(JB), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(JB)
D : (%, List(Symbol)) -> %
from PartialDifferentialRing(Symbol)
D : (%, List(Symbol), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(Symbol)
D : (%, Symbol) -> %
from PartialDifferentialRing(Symbol)
D : (%, Symbol, NonNegativeInteger) -> %
from PartialDifferentialRing(Symbol)
P : List(NonNegativeInteger) -> %
from JetBundleFunctionCategory(JB)
P : NonNegativeInteger -> %
from JetBundleFunctionCategory(JB)
P : (PositiveInteger, List(NonNegativeInteger)) -> %
from JetBundleFunctionCategory(JB)
P : (PositiveInteger, NonNegativeInteger) -> %
from JetBundleFunctionCategory(JB)
U : () -> %
from JetBundleFunctionCategory(JB)
U : PositiveInteger -> %
from JetBundleFunctionCategory(JB)
X : () -> %
from JetBundleFunctionCategory(JB)
X : PositiveInteger -> %
from JetBundleFunctionCategory(JB)
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
autoReduce : List(%) -> List(%)
from JetBundleFunctionCategory(JB)
binomThmExpt : (%, %, NonNegativeInteger) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents(JB))
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
charthRoot : % -> Union(%, "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit or R has CharacteristicNonZero
from PolynomialFactorizationExplicit
class : % -> NonNegativeInteger
from JetBundleFunctionCategory(JB)
coefficient : (%, JB, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents(JB), JB)
coefficient : (%, List(JB), List(NonNegativeInteger)) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents(JB), JB)
coefficient : (%, IndexedExponents(JB)) -> R
from AbelianMonoidRing(R, IndexedExponents(JB))
coefficients : % -> List(R)
from FreeModuleCategory(R, IndexedExponents(JB))
coerce : % -> %
from Algebra(%)
coerce : JB -> %
from CoercibleFrom(JB)
coerce : R -> %
from Algebra(R)
coerce : Fraction(Integer) -> % if R has Algebra(Fraction(Integer)) or R has RetractableTo(Fraction(Integer))
from Algebra(Fraction(Integer))
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
const? : % -> Boolean
from JetBundleFunctionCategory(JB)
construct : List(Record(k : IndexedExponents(JB), c : R)) -> %
from IndexedProductCategory(R, IndexedExponents(JB))
constructOrdered : List(Record(k : IndexedExponents(JB), c : R)) -> %
from IndexedProductCategory(R, IndexedExponents(JB))
content : (%, JB) -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents(JB), JB)
content : % -> R if R has GcdDomain
from FiniteAbelianMonoidRing(R, IndexedExponents(JB))
convert : % -> InputForm if R has ConvertibleTo(InputForm) and JB has ConvertibleTo(InputForm)
from ConvertibleTo(InputForm)
convert : % -> Pattern(Float) if R has ConvertibleTo(Pattern(Float)) and JB has ConvertibleTo(Pattern(Float))
from ConvertibleTo(Pattern(Float))
convert : % -> Pattern(Integer) if R has ConvertibleTo(Pattern(Integer)) and JB has ConvertibleTo(Pattern(Integer))
from ConvertibleTo(Pattern(Integer))
dSubst : (%, JB, %) -> %
from JetBundleFunctionCategory(JB)
degree : % -> IndexedExponents(JB)
from AbelianMonoidRing(R, IndexedExponents(JB))
degree : (%, List(JB)) -> List(NonNegativeInteger)
from MaybeSkewPolynomialCategory(R, IndexedExponents(JB), JB)
degree : (%, JB) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents(JB), JB)
denominator : % -> %
from JetBundleFunctionCategory(JB)
differentiate : (%, JB) -> %
from PartialDifferentialRing(JB)
differentiate : (%, JB, NonNegativeInteger) -> %
from PartialDifferentialRing(JB)
differentiate : (%, List(JB)) -> %
from PartialDifferentialRing(JB)
differentiate : (%, List(JB), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(JB)
differentiate : (%, List(Symbol)) -> %
from PartialDifferentialRing(Symbol)
differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(Symbol)
differentiate : (%, Symbol) -> %
from PartialDifferentialRing(Symbol)
differentiate : (%, Symbol, NonNegativeInteger) -> %
from PartialDifferentialRing(Symbol)
dimension : (List(%), SparseEchelonMatrix(JB, %), NonNegativeInteger) -> NonNegativeInteger
from JetBundleFunctionCategory(JB)
discriminant : (%, JB) -> % if R has CommutativeRing
from PolynomialCategory(R, IndexedExponents(JB), JB)
eval : (%, %, %) -> %
from InnerEvalable(%, %)
eval : (%, JB, %) -> %
from InnerEvalable(JB, %)
eval : (%, JB, R) -> %
from InnerEvalable(JB, R)
eval : (%, Equation(%)) -> %
from Evalable(%)
eval : (%, List(%), List(%)) -> %
from InnerEvalable(%, %)
eval : (%, List(JB), List(%)) -> %
from InnerEvalable(JB, %)
eval : (%, List(JB), List(R)) -> %
from InnerEvalable(JB, R)
eval : (%, List(Equation(%))) -> %
from Evalable(%)
exquo : (%, %) -> Union(%, "failed")
from EntireRing
exquo : (%, R) -> Union(%, "failed") if R has EntireRing
from FiniteAbelianMonoidRing(R, IndexedExponents(JB))
extractSymbol : SparseEchelonMatrix(JB, %) -> SparseEchelonMatrix(JB, %)
from JetBundleFunctionCategory(JB)
factor : % -> Factored(%) if R has PolynomialFactorizationExplicit
from UniqueFactorizationDomain
factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
fmecg : (%, IndexedExponents(JB), R, %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents(JB))
formalDiff : (%, List(NonNegativeInteger)) -> %
from JetBundleFunctionCategory(JB)
formalDiff : (%, PositiveInteger) -> %
from JetBundleFunctionCategory(JB)
formalDiff : (List(%), PositiveInteger) -> List(%)
from JetBundleFunctionCategory(JB)
formalDiff2 : (%, PositiveInteger, SparseEchelonMatrix(JB, %)) -> Record(DPhi : %, JVars : List(JB))
from JetBundleFunctionCategory(JB)
formalDiff2 : (List(%), PositiveInteger, SparseEchelonMatrix(JB, %)) -> Record(DSys : List(%), JVars : List(List(JB)))
from JetBundleFunctionCategory(JB)
freeOf? : (%, JB) -> Boolean
from JetBundleFunctionCategory(JB)
gcd : (%, %) -> %
from GcdDomain
gcd : List(%) -> %
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
from PolynomialFactorizationExplicit
getNotation : () -> Symbol
from JetBundleFunctionCategory(JB)
groebner : List(%) -> List(%) if R has GcdDomain

groebner(lp) computes a Groebner basis for the ideal generated by lp wrt a lexicographic ordering.

ground : % -> R
from FiniteAbelianMonoidRing(R, IndexedExponents(JB))
ground? : % -> Boolean
from FiniteAbelianMonoidRing(R, IndexedExponents(JB))
hash : % -> SingleInteger if JB has Hashable and R has Hashable
from Hashable
hashUpdate! : (HashState, %) -> HashState if JB has Hashable and R has Hashable
from Hashable
isExpt : % -> Union(Record(var : JB, exponent : NonNegativeInteger), "failed")
from PolynomialCategory(R, IndexedExponents(JB), JB)
isPlus : % -> Union(List(%), "failed")
from PolynomialCategory(R, IndexedExponents(JB), JB)
isTimes : % -> Union(List(%), "failed")
from PolynomialCategory(R, IndexedExponents(JB), JB)
jacobiMatrix : List(%) -> SparseEchelonMatrix(JB, %)
from JetBundleFunctionCategory(JB)
jacobiMatrix : (List(%), List(List(JB))) -> SparseEchelonMatrix(JB, %)
from JetBundleFunctionCategory(JB)
jetVariables : % -> List(JB)
from JetBundleFunctionCategory(JB)
latex : % -> String
from SetCategory
lcm : (%, %) -> %
from GcdDomain
lcm : List(%) -> %
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
from LeftOreRing
leadingCoefficient : % -> R
from IndexedProductCategory(R, IndexedExponents(JB))
leadingDer : % -> JB
from JetBundleFunctionCategory(JB)
leadingMonomial : % -> %
from IndexedProductCategory(R, IndexedExponents(JB))
leadingSupport : % -> IndexedExponents(JB)
from IndexedProductCategory(R, IndexedExponents(JB))
leadingTerm : % -> Record(k : IndexedExponents(JB), c : R)
from IndexedProductCategory(R, IndexedExponents(JB))
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
linearExtend : (Mapping(R, IndexedExponents(JB)), %) -> R if R has CommutativeRing
from FreeModuleCategory(R, IndexedExponents(JB))
listOfTerms : % -> List(Record(k : IndexedExponents(JB), c : R))
from IndexedDirectProductCategory(R, IndexedExponents(JB))
mainVariable : % -> Union(JB, "failed")
from MaybeSkewPolynomialCategory(R, IndexedExponents(JB), JB)
map : (Mapping(R, R), %) -> %
from IndexedProductCategory(R, IndexedExponents(JB))
mapExponents : (Mapping(IndexedExponents(JB), IndexedExponents(JB)), %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents(JB))
minimumDegree : % -> IndexedExponents(JB)
from FiniteAbelianMonoidRing(R, IndexedExponents(JB))
minimumDegree : (%, List(JB)) -> List(NonNegativeInteger)
from PolynomialCategory(R, IndexedExponents(JB), JB)
minimumDegree : (%, JB) -> NonNegativeInteger
from PolynomialCategory(R, IndexedExponents(JB), JB)
monicDivide : (%, %, JB) -> Record(quotient : %, remainder : %)
from PolynomialCategory(R, IndexedExponents(JB), JB)
monomial : (%, JB, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents(JB), JB)
monomial : (%, List(JB), List(NonNegativeInteger)) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents(JB), JB)
monomial : (R, IndexedExponents(JB)) -> %
from IndexedProductCategory(R, IndexedExponents(JB))
monomial? : % -> Boolean
from IndexedProductCategory(R, IndexedExponents(JB))
monomials : % -> List(%)
from MaybeSkewPolynomialCategory(R, IndexedExponents(JB), JB)
multivariate : (SparseUnivariatePolynomial(%), JB) -> %
from PolynomialCategory(R, IndexedExponents(JB), JB)
multivariate : (SparseUnivariatePolynomial(R), JB) -> %
from PolynomialCategory(R, IndexedExponents(JB), JB)
numDepVar : () -> PositiveInteger
from JetBundleFunctionCategory(JB)
numIndVar : () -> PositiveInteger
from JetBundleFunctionCategory(JB)
numberOfMonomials : % -> NonNegativeInteger
from IndexedDirectProductCategory(R, IndexedExponents(JB))
numerator : % -> %
from JetBundleFunctionCategory(JB)
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
order : % -> NonNegativeInteger
from JetBundleFunctionCategory(JB)
orderDim : (List(%), SparseEchelonMatrix(JB, %), NonNegativeInteger) -> NonNegativeInteger
from JetBundleFunctionCategory(JB)
patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if JB has PatternMatchable(Float) and R has PatternMatchable(Float)
from PatternMatchable(Float)
patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if JB has PatternMatchable(Integer) and R has PatternMatchable(Integer)
from PatternMatchable(Integer)
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
pomopo! : (%, R, IndexedExponents(JB), %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents(JB))
prime? : % -> Boolean if R has PolynomialFactorizationExplicit
from UniqueFactorizationDomain
primitiveMonomials : % -> List(%)
from MaybeSkewPolynomialCategory(R, IndexedExponents(JB), JB)
primitivePart : % -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents(JB), JB)
primitivePart : (%, JB) -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents(JB), JB)
recip : % -> Union(%, "failed")
from MagmaWithUnit
reduceMod : (List(%), List(%)) -> List(%)
from JetBundleFunctionCategory(JB)
reducedSystem : Matrix(%) -> Matrix(R)
from LinearlyExplicitOver(R)
reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
from LinearlyExplicitOver(Integer)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
from LinearlyExplicitOver(R)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
from LinearlyExplicitOver(Integer)
reductum : % -> %
from IndexedProductCategory(R, IndexedExponents(JB))
resultant : (%, %, JB) -> % if R has CommutativeRing
from PolynomialCategory(R, IndexedExponents(JB), JB)
retract : % -> JB
from RetractableTo(JB)
retract : % -> R
from RetractableTo(R)
retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retract : % -> Integer if R has RetractableTo(Integer)
from RetractableTo(Integer)
retractIfCan : % -> Union(JB, "failed")
from RetractableTo(JB)
retractIfCan : % -> Union(R, "failed")
from RetractableTo(R)
retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
from RetractableTo(Integer)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
setNotation : Symbol -> Void
from JetBundleFunctionCategory(JB)
simpMod : (List(%), List(%)) -> List(%)
from JetBundleFunctionCategory(JB)
simpMod : (List(%), SparseEchelonMatrix(JB, %), List(%)) -> Record(Sys : List(%), JM : SparseEchelonMatrix(JB, %), Depend : Union("failed", List(List(NonNegativeInteger))))
from JetBundleFunctionCategory(JB)
simpOne : % -> %
from JetBundleFunctionCategory(JB)
simplify : (List(%), SparseEchelonMatrix(JB, %)) -> Record(Sys : List(%), JM : SparseEchelonMatrix(JB, %), Depend : Union("failed", List(List(NonNegativeInteger))))
from JetBundleFunctionCategory(JB)
smaller? : (%, %) -> Boolean if R has Comparable
from Comparable
solveFor : (%, JB) -> Union(%, "failed")
from JetBundleFunctionCategory(JB)
solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
sortLD : List(%) -> List(%)
from JetBundleFunctionCategory(JB)
squareFree : % -> Factored(%) if R has GcdDomain
from PolynomialCategory(R, IndexedExponents(JB), JB)
squareFreePart : % -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents(JB), JB)
squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
subst : (%, JB, %) -> %
from JetBundleFunctionCategory(JB)
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
support : % -> List(IndexedExponents(JB))
from FreeModuleCategory(R, IndexedExponents(JB))
symbol : List(%) -> SparseEchelonMatrix(JB, %)
from JetBundleFunctionCategory(JB)
totalDegree : % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents(JB), JB)
totalDegree : (%, List(JB)) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents(JB), JB)
totalDegreeSorted : (%, List(JB)) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents(JB), JB)
unit? : % -> Boolean
from EntireRing
unitCanonical : % -> %
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %)
from EntireRing
univariate : (%, JB) -> SparseUnivariatePolynomial(%)
from PolynomialCategory(R, IndexedExponents(JB), JB)
univariate : % -> SparseUnivariatePolynomial(R)
from PolynomialCategory(R, IndexedExponents(JB), JB)
variables : % -> List(JB)
from MaybeSkewPolynomialCategory(R, IndexedExponents(JB), JB)
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

CharacteristicNonZero

Module(Fraction(Integer))

NonAssociativeSemiRing

LeftModule(R)

BiModule(%, %)

canonicalUnitNormal

Rng

CoercibleFrom(Integer)

TwoSidedRecip

FullyRetractableTo(R)

SemiRing

EntireRing

NonAssociativeAlgebra(Fraction(Integer))

FreeModuleCategory(R, IndexedExponents(JB))

unitsKnown

FullyLinearlyExplicitOver(R)

PatternMatchable(Float)

IndexedProductCategory(R, IndexedExponents(JB))

AbelianSemiGroup

noZeroDivisors

CoercibleFrom(JB)

PartialDifferentialRing(Symbol)

UniqueFactorizationDomain

InnerEvalable(%, %)

SemiGroup

Magma

GcdDomain

IntegralDomain

ConvertibleTo(InputForm)

LeftModule(%)

NonAssociativeRing

CharacteristicZero

Module(R)

MaybeSkewPolynomialCategory(R, IndexedExponents(JB), JB)

Algebra(%)

BiModule(R, R)

RightModule(Fraction(Integer))

Algebra(R)

JetBundleFunctionCategory(JB)

RightModule(R)

NonAssociativeRng

CommutativeRing

LeftOreRing

CancellationAbelianMonoid

RetractableTo(Integer)

SetCategory

LinearlyExplicitOver(R)

AbelianMonoidRing(R, IndexedExponents(JB))

CommutativeStar

VariablesCommuteWithCoefficients

AbelianMonoid

MagmaWithUnit

Comparable

AbelianGroup

FiniteAbelianMonoidRing(R, IndexedExponents(JB))

RightModule(%)

AbelianProductCategory(R)

Hashable

InnerEvalable(JB, %)

Evalable(%)

Module(%)

LinearlyExplicitOver(Integer)

CoercibleTo(OutputForm)

SemiRng

ConvertibleTo(Pattern(Float))

Monoid

PolynomialFactorizationExplicit

NonAssociativeAlgebra(R)

NonAssociativeAlgebra(%)

Algebra(Fraction(Integer))

BasicType

Ring

RightModule(Integer)

IndexedDirectProductCategory(R, IndexedExponents(JB))

ConvertibleTo(Pattern(Integer))

CoercibleFrom(Fraction(Integer))

PartialDifferentialRing(JB)

LeftModule(Fraction(Integer))

NonAssociativeSemiRng

CoercibleFrom(R)

BiModule(Fraction(Integer), Fraction(Integer))

InnerEvalable(JB, R)

RetractableTo(Fraction(Integer))

RetractableTo(R)

PatternMatchable(Integer)

RetractableTo(JB)

PolynomialCategory(R, IndexedExponents(JB), JB)