DifferentialSparseMultivariatePolynomial(R, S, V)

dpolcat.spad line 407 [edit on github]

DifferentialSparseMultivariatePolynomial implements an ordinary differential polynomial ring by combining a domain belonging to the category DifferentialVariableCategory with the domain SparseMultivariatePolynomial.

* : (%, %) -> %
from Magma
* : (%, R) -> %
from RightModule(R)
* : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
from RightModule(Fraction(Integer))
* : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
from RightModule(Integer)
* : (R, %) -> %
from LeftModule(R)
* : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
from LeftModule(Fraction(Integer))
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, R) -> % if R has Field
from AbelianMonoidRing(R, IndexedExponents(V))
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
D : % -> % if R has DifferentialRing
from DifferentialRing
D : (%, V) -> %
from PartialDifferentialRing(V)
D : (%, V, NonNegativeInteger) -> %
from PartialDifferentialRing(V)
D : (%, List(V)) -> %
from PartialDifferentialRing(V)
D : (%, List(V), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(V)
D : (%, List(Symbol)) -> % if R has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
D : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
D : (%, Mapping(R, R)) -> %
from DifferentialExtension(R)
D : (%, Mapping(R, R), NonNegativeInteger) -> %
from DifferentialExtension(R)
D : (%, NonNegativeInteger) -> % if R has DifferentialRing
from DifferentialRing
D : (%, Symbol) -> % if R has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
D : (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean if R has EntireRing
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
from FiniteAbelianMonoidRing(R, IndexedExponents(V))
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
charthRoot : % -> Union(%, "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit or R has CharacteristicNonZero
from CharacteristicNonZero
coefficient : (%, V, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents(V), V)
coefficient : (%, List(V), List(NonNegativeInteger)) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents(V), V)
coefficient : (%, IndexedExponents(V)) -> R
from AbelianMonoidRing(R, IndexedExponents(V))
coefficients : % -> List(R)
from FreeModuleCategory(R, IndexedExponents(V))
coerce : % -> % if R has CommutativeRing
from Algebra(%)
coerce : R -> %
from Algebra(R)
coerce : S -> %
from CoercibleFrom(S)
coerce : V -> %
from CoercibleFrom(V)
coerce : Fraction(Integer) -> % if R has RetractableTo(Fraction(Integer)) or R has Algebra(Fraction(Integer))
from Algebra(Fraction(Integer))
coerce : Integer -> %
from NonAssociativeRing
coerce : SparseMultivariatePolynomial(R, S) -> %
from CoercibleFrom(SparseMultivariatePolynomial(R, S))
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
construct : List(Record(k : IndexedExponents(V), c : R)) -> %
from IndexedProductCategory(R, IndexedExponents(V))
constructOrdered : List(Record(k : IndexedExponents(V), c : R)) -> %
from IndexedProductCategory(R, IndexedExponents(V))
content : (%, V) -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents(V), V)
content : % -> R if R has GcdDomain
from FiniteAbelianMonoidRing(R, IndexedExponents(V))
convert : % -> InputForm if V has ConvertibleTo(InputForm) and R has ConvertibleTo(InputForm)
from ConvertibleTo(InputForm)
convert : % -> Pattern(Float) if V has ConvertibleTo(Pattern(Float)) and R has ConvertibleTo(Pattern(Float))
from ConvertibleTo(Pattern(Float))
convert : % -> Pattern(Integer) if V has ConvertibleTo(Pattern(Integer)) and R has ConvertibleTo(Pattern(Integer))
from ConvertibleTo(Pattern(Integer))
degree : % -> IndexedExponents(V)
from AbelianMonoidRing(R, IndexedExponents(V))
degree : (%, List(V)) -> List(NonNegativeInteger)
from MaybeSkewPolynomialCategory(R, IndexedExponents(V), V)
degree : (%, S) -> NonNegativeInteger
from DifferentialPolynomialCategory(R, S, V, IndexedExponents(V))
degree : (%, V) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents(V), V)
differentialVariables : % -> List(S)
from DifferentialPolynomialCategory(R, S, V, IndexedExponents(V))
differentiate : % -> % if R has DifferentialRing
from DifferentialRing
differentiate : (%, V) -> %
from PartialDifferentialRing(V)
differentiate : (%, V, NonNegativeInteger) -> %
from PartialDifferentialRing(V)
differentiate : (%, List(V)) -> %
from PartialDifferentialRing(V)
differentiate : (%, List(V), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(V)
differentiate : (%, List(Symbol)) -> % if R has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
differentiate : (%, Mapping(R, R)) -> %
from DifferentialExtension(R)
differentiate : (%, Mapping(R, R), NonNegativeInteger) -> %
from DifferentialExtension(R)
differentiate : (%, NonNegativeInteger) -> % if R has DifferentialRing
from DifferentialRing
differentiate : (%, Symbol) -> % if R has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
differentiate : (%, Symbol, NonNegativeInteger) -> % if R has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
discriminant : (%, V) -> % if R has CommutativeRing
from PolynomialCategory(R, IndexedExponents(V), V)
eval : (%, %, %) -> %
from InnerEvalable(%, %)
eval : (%, S, %) -> % if R has DifferentialRing
from InnerEvalable(S, %)
eval : (%, S, R) -> % if R has DifferentialRing
from InnerEvalable(S, R)
eval : (%, V, %) -> %
from InnerEvalable(V, %)
eval : (%, V, R) -> %
from InnerEvalable(V, R)
eval : (%, Equation(%)) -> %
from Evalable(%)
eval : (%, List(%), List(%)) -> %
from InnerEvalable(%, %)
eval : (%, List(S), List(%)) -> % if R has DifferentialRing
from InnerEvalable(S, %)
eval : (%, List(S), List(R)) -> % if R has DifferentialRing
from InnerEvalable(S, R)
eval : (%, List(V), List(%)) -> %
from InnerEvalable(V, %)
eval : (%, List(V), List(R)) -> %
from InnerEvalable(V, R)
eval : (%, List(Equation(%))) -> %
from Evalable(%)
exquo : (%, %) -> Union(%, "failed") if R has EntireRing
from EntireRing
exquo : (%, R) -> Union(%, "failed") if R has EntireRing
from FiniteAbelianMonoidRing(R, IndexedExponents(V))
factor : % -> Factored(%) if R has PolynomialFactorizationExplicit
from UniqueFactorizationDomain
factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
fmecg : (%, IndexedExponents(V), R, %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents(V))
gcd : (%, %) -> % if R has GcdDomain
from GcdDomain
gcd : List(%) -> % if R has GcdDomain
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has GcdDomain
from PolynomialFactorizationExplicit
ground : % -> R
from FiniteAbelianMonoidRing(R, IndexedExponents(V))
ground? : % -> Boolean
from FiniteAbelianMonoidRing(R, IndexedExponents(V))
hash : % -> SingleInteger if R has Hashable and V has Hashable
from Hashable
hashUpdate! : (HashState, %) -> HashState if R has Hashable and V has Hashable
from Hashable
initial : % -> %
from DifferentialPolynomialCategory(R, S, V, IndexedExponents(V))
isExpt : % -> Union(Record(var : V, exponent : NonNegativeInteger), "failed")
from PolynomialCategory(R, IndexedExponents(V), V)
isPlus : % -> Union(List(%), "failed")
from PolynomialCategory(R, IndexedExponents(V), V)
isTimes : % -> Union(List(%), "failed")
from PolynomialCategory(R, IndexedExponents(V), V)
isobaric? : % -> Boolean
from DifferentialPolynomialCategory(R, S, V, IndexedExponents(V))
latex : % -> String
from SetCategory
lcm : (%, %) -> % if R has GcdDomain
from GcdDomain
lcm : List(%) -> % if R has GcdDomain
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has GcdDomain
from LeftOreRing
leader : % -> V
from DifferentialPolynomialCategory(R, S, V, IndexedExponents(V))
leadingCoefficient : % -> R
from IndexedProductCategory(R, IndexedExponents(V))
leadingMonomial : % -> %
from IndexedProductCategory(R, IndexedExponents(V))
leadingSupport : % -> IndexedExponents(V)
from IndexedProductCategory(R, IndexedExponents(V))
leadingTerm : % -> Record(k : IndexedExponents(V), c : R)
from IndexedProductCategory(R, IndexedExponents(V))
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
linearExtend : (Mapping(R, IndexedExponents(V)), %) -> R if R has CommutativeRing
from FreeModuleCategory(R, IndexedExponents(V))
listOfTerms : % -> List(Record(k : IndexedExponents(V), c : R))
from IndexedDirectProductCategory(R, IndexedExponents(V))
mainVariable : % -> Union(V, "failed")
from MaybeSkewPolynomialCategory(R, IndexedExponents(V), V)
makeVariable : % -> Mapping(%, NonNegativeInteger) if R has DifferentialRing
from DifferentialPolynomialCategory(R, S, V, IndexedExponents(V))
makeVariable : S -> Mapping(%, NonNegativeInteger)
from DifferentialPolynomialCategory(R, S, V, IndexedExponents(V))
map : (Mapping(R, R), %) -> %
from IndexedProductCategory(R, IndexedExponents(V))
mapExponents : (Mapping(IndexedExponents(V), IndexedExponents(V)), %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents(V))
minimumDegree : % -> IndexedExponents(V)
from FiniteAbelianMonoidRing(R, IndexedExponents(V))
minimumDegree : (%, List(V)) -> List(NonNegativeInteger)
from PolynomialCategory(R, IndexedExponents(V), V)
minimumDegree : (%, V) -> NonNegativeInteger
from PolynomialCategory(R, IndexedExponents(V), V)
monicDivide : (%, %, V) -> Record(quotient : %, remainder : %)
from PolynomialCategory(R, IndexedExponents(V), V)
monomial : (%, V, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents(V), V)
monomial : (%, List(V), List(NonNegativeInteger)) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents(V), V)
monomial : (R, IndexedExponents(V)) -> %
from IndexedProductCategory(R, IndexedExponents(V))
monomial? : % -> Boolean
from IndexedProductCategory(R, IndexedExponents(V))
monomials : % -> List(%)
from MaybeSkewPolynomialCategory(R, IndexedExponents(V), V)
multivariate : (SparseUnivariatePolynomial(%), V) -> %
from PolynomialCategory(R, IndexedExponents(V), V)
multivariate : (SparseUnivariatePolynomial(R), V) -> %
from PolynomialCategory(R, IndexedExponents(V), V)
numberOfMonomials : % -> NonNegativeInteger
from IndexedDirectProductCategory(R, IndexedExponents(V))
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
order : % -> NonNegativeInteger
from DifferentialPolynomialCategory(R, S, V, IndexedExponents(V))
order : (%, S) -> NonNegativeInteger
from DifferentialPolynomialCategory(R, S, V, IndexedExponents(V))
patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if V has PatternMatchable(Float) and R has PatternMatchable(Float)
from PatternMatchable(Float)
patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if V has PatternMatchable(Integer) and R has PatternMatchable(Integer)
from PatternMatchable(Integer)
plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing or R has Algebra(Fraction(Integer))
from NonAssociativeAlgebra(%)
pomopo! : (%, R, IndexedExponents(V), %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents(V))
prime? : % -> Boolean if R has PolynomialFactorizationExplicit
from UniqueFactorizationDomain
primitiveMonomials : % -> List(%)
from MaybeSkewPolynomialCategory(R, IndexedExponents(V), V)
primitivePart : % -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents(V), V)
primitivePart : (%, V) -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents(V), V)
recip : % -> Union(%, "failed")
from MagmaWithUnit
reducedSystem : Matrix(%) -> Matrix(R)
from LinearlyExplicitOver(R)
reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
from LinearlyExplicitOver(Integer)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
from LinearlyExplicitOver(R)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
from LinearlyExplicitOver(Integer)
reductum : % -> %
from IndexedProductCategory(R, IndexedExponents(V))
resultant : (%, %, V) -> % if R has CommutativeRing
from PolynomialCategory(R, IndexedExponents(V), V)
retract : % -> R
from RetractableTo(R)
retract : % -> S
from RetractableTo(S)
retract : % -> V
from RetractableTo(V)
retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retract : % -> Integer if R has RetractableTo(Integer)
from RetractableTo(Integer)
retract : % -> SparseMultivariatePolynomial(R, S)
from RetractableTo(SparseMultivariatePolynomial(R, S))
retractIfCan : % -> Union(R, "failed")
from RetractableTo(R)
retractIfCan : % -> Union(S, "failed")
from RetractableTo(S)
retractIfCan : % -> Union(V, "failed")
from RetractableTo(V)
retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
from RetractableTo(Integer)
retractIfCan : % -> Union(SparseMultivariatePolynomial(R, S), "failed")
from RetractableTo(SparseMultivariatePolynomial(R, S))
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
separant : % -> %
from DifferentialPolynomialCategory(R, S, V, IndexedExponents(V))
smaller? : (%, %) -> Boolean if R has Comparable
from Comparable
solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
squareFree : % -> Factored(%) if R has GcdDomain
from PolynomialCategory(R, IndexedExponents(V), V)
squareFreePart : % -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents(V), V)
squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
support : % -> List(IndexedExponents(V))
from FreeModuleCategory(R, IndexedExponents(V))
totalDegree : % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents(V), V)
totalDegree : (%, List(V)) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents(V), V)
totalDegreeSorted : (%, List(V)) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents(V), V)
unit? : % -> Boolean if R has EntireRing
from EntireRing
unitCanonical : % -> % if R has EntireRing
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
from EntireRing
univariate : (%, V) -> SparseUnivariatePolynomial(%)
from PolynomialCategory(R, IndexedExponents(V), V)
univariate : % -> SparseUnivariatePolynomial(R)
from PolynomialCategory(R, IndexedExponents(V), V)
variables : % -> List(V)
from MaybeSkewPolynomialCategory(R, IndexedExponents(V), V)
weight : % -> NonNegativeInteger
from DifferentialPolynomialCategory(R, S, V, IndexedExponents(V))
weight : (%, S) -> NonNegativeInteger
from DifferentialPolynomialCategory(R, S, V, IndexedExponents(V))
weights : % -> List(NonNegativeInteger)
from DifferentialPolynomialCategory(R, S, V, IndexedExponents(V))
weights : (%, S) -> List(NonNegativeInteger)
from DifferentialPolynomialCategory(R, S, V, IndexedExponents(V))
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

PatternMatchable(Integer)

CharacteristicNonZero

Module(Fraction(Integer))

NonAssociativeSemiRing

RetractableTo(SparseMultivariatePolynomial(R, S))

LeftModule(R)

CoercibleFrom(V)

BiModule(%, %)

AbelianProductCategory(R)

ConvertibleTo(InputForm)

canonicalUnitNormal

Rng

CoercibleFrom(Integer)

TwoSidedRecip

FullyRetractableTo(R)

SemiRing

EntireRing

NonAssociativeAlgebra(Fraction(Integer))

FreeModuleCategory(R, IndexedExponents(V))

unitsKnown

FullyLinearlyExplicitOver(R)

PatternMatchable(Float)

PolynomialCategory(R, IndexedExponents(V), V)

DifferentialPolynomialCategory(R, S, V, IndexedExponents(V))

IndexedProductCategory(R, IndexedExponents(V))

AbelianSemiGroup

noZeroDivisors

CoercibleFrom(R)

CoercibleFrom(S)

InnerEvalable(S, %)

SemiGroup

Magma

GcdDomain

IntegralDomain

LeftModule(%)

InnerEvalable(V, R)

UniqueFactorizationDomain

PartialDifferentialRing(Symbol)

CharacteristicZero

Module(R)

CoercibleFrom(Fraction(Integer))

Algebra(%)

InnerEvalable(S, R)

DifferentialRing

BiModule(R, R)

RightModule(Fraction(Integer))

PartialDifferentialRing(V)

InnerEvalable(V, %)

RightModule(R)

NonAssociativeRng

CommutativeRing

NonAssociativeSemiRng

CancellationAbelianMonoid

RetractableTo(Integer)

LinearlyExplicitOver(R)

AbelianMonoidRing(R, IndexedExponents(V))

SetCategory

CommutativeStar

AbelianMonoid

MagmaWithUnit

Comparable

NonAssociativeRing

RightModule(%)

VariablesCommuteWithCoefficients

NonAssociativeAlgebra(%)

Hashable

RetractableTo(S)

CoercibleFrom(SparseMultivariatePolynomial(R, S))

Module(%)

CoercibleTo(OutputForm)

DifferentialExtension(R)

MaybeSkewPolynomialCategory(R, IndexedExponents(V), V)

FiniteAbelianMonoidRing(R, IndexedExponents(V))

ConvertibleTo(Pattern(Float))

SemiRng

LinearlyExplicitOver(Integer)

Monoid

PolynomialFactorizationExplicit

NonAssociativeAlgebra(R)

LeftOreRing

Algebra(R)

Algebra(Fraction(Integer))

BasicType

Ring

RightModule(Integer)

IndexedDirectProductCategory(R, IndexedExponents(V))

InnerEvalable(%, %)

LeftModule(Fraction(Integer))

Evalable(%)

BiModule(Fraction(Integer), Fraction(Integer))

RetractableTo(Fraction(Integer))

RetractableTo(R)

RetractableTo(V)

ConvertibleTo(Pattern(Integer))

AbelianGroup