NewSparseMultivariatePolynomial(R, VarSet)

newpoly.spad line 1315 [edit on github]

A post-facto extension for SMP in order to speed up operations related to pseudo-division and gcd. This domain is based on the NSUP constructor which is itself a post-facto extension of the SUP constructor.

* : (%, %) -> %
from Magma
* : (%, R) -> %
from RightModule(R)
* : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
from RightModule(Fraction(Integer))
* : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
from RightModule(Integer)
* : (R, %) -> %
from LeftModule(R)
* : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
from LeftModule(Fraction(Integer))
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, R) -> % if R has Field
from AbelianMonoidRing(R, IndexedExponents(VarSet))
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
D : (%, VarSet) -> %
from PartialDifferentialRing(VarSet)
D : (%, VarSet, NonNegativeInteger) -> %
from PartialDifferentialRing(VarSet)
D : (%, List(VarSet)) -> %
from PartialDifferentialRing(VarSet)
D : (%, List(VarSet), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(VarSet)
LazardQuotient : (%, %, NonNegativeInteger) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
LazardQuotient2 : (%, %, %, NonNegativeInteger) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
RittWuCompare : (%, %) -> Union(Boolean, "failed")
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean if R has EntireRing
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
coefficient : (%, VarSet, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
coefficient : (%, List(VarSet), List(NonNegativeInteger)) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
coefficient : (%, IndexedExponents(VarSet)) -> R
from AbelianMonoidRing(R, IndexedExponents(VarSet))
coefficients : % -> List(R)
from FreeModuleCategory(R, IndexedExponents(VarSet))
coerce : % -> % if R has CommutativeRing
from Algebra(%)
coerce : R -> %
from Algebra(R)
coerce : VarSet -> %
from CoercibleFrom(VarSet)
coerce : Fraction(Integer) -> % if R has RetractableTo(Fraction(Integer)) or R has Algebra(Fraction(Integer))
from Algebra(Fraction(Integer))
coerce : Integer -> %
from NonAssociativeRing
coerce : SparseMultivariatePolynomial(R, VarSet) -> %
from CoercibleFrom(SparseMultivariatePolynomial(R, VarSet))
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
coerce : % -> Polynomial(R) if VarSet has ConvertibleTo(Symbol)
from CoercibleTo(Polynomial(R))
coerce : % -> SparseMultivariatePolynomial(R, VarSet)
from CoercibleTo(SparseMultivariatePolynomial(R, VarSet))
commutator : (%, %) -> %
from NonAssociativeRng
conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
construct : List(Record(k : IndexedExponents(VarSet), c : R)) -> %
from IndexedProductCategory(R, IndexedExponents(VarSet))
constructOrdered : List(Record(k : IndexedExponents(VarSet), c : R)) -> %
from IndexedProductCategory(R, IndexedExponents(VarSet))
content : (%, VarSet) -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
content : % -> R if R has GcdDomain
from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
convert : Polynomial(R) -> % if VarSet has ConvertibleTo(Symbol)
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
convert : Polynomial(Fraction(Integer)) -> % if R has Algebra(Fraction(Integer)) and VarSet has ConvertibleTo(Symbol)
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
convert : Polynomial(Integer) -> % if R has Algebra(Integer) and VarSet has ConvertibleTo(Symbol)
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
convert : % -> InputForm if VarSet has ConvertibleTo(InputForm) and R has ConvertibleTo(InputForm)
from ConvertibleTo(InputForm)
convert : % -> Pattern(Float) if VarSet has ConvertibleTo(Pattern(Float)) and R has ConvertibleTo(Pattern(Float))
from ConvertibleTo(Pattern(Float))
convert : % -> Pattern(Integer) if VarSet has ConvertibleTo(Pattern(Integer)) and R has ConvertibleTo(Pattern(Integer))
from ConvertibleTo(Pattern(Integer))
convert : % -> Polynomial(R) if VarSet has ConvertibleTo(Symbol)
from ConvertibleTo(Polynomial(R))
convert : % -> String if R has RetractableTo(Integer) and VarSet has ConvertibleTo(Symbol)
from ConvertibleTo(String)
deepestInitial : % -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
deepestTail : % -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
degree : % -> IndexedExponents(VarSet)
from AbelianMonoidRing(R, IndexedExponents(VarSet))
degree : (%, List(VarSet)) -> List(NonNegativeInteger)
from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
degree : (%, VarSet) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
differentiate : (%, VarSet) -> %
from PartialDifferentialRing(VarSet)
differentiate : (%, VarSet, NonNegativeInteger) -> %
from PartialDifferentialRing(VarSet)
differentiate : (%, List(VarSet)) -> %
from PartialDifferentialRing(VarSet)
differentiate : (%, List(VarSet), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(VarSet)
discriminant : (%, VarSet) -> % if R has CommutativeRing
from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
eval : (%, %, %) -> %
from InnerEvalable(%, %)
eval : (%, VarSet, %) -> %
from InnerEvalable(VarSet, %)
eval : (%, VarSet, R) -> %
from InnerEvalable(VarSet, R)
eval : (%, Equation(%)) -> %
from Evalable(%)
eval : (%, List(%), List(%)) -> %
from InnerEvalable(%, %)
eval : (%, List(VarSet), List(%)) -> %
from InnerEvalable(VarSet, %)
eval : (%, List(VarSet), List(R)) -> %
from InnerEvalable(VarSet, R)
eval : (%, List(Equation(%))) -> %
from Evalable(%)
exactQuotient : (%, %) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
exactQuotient : (%, R) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
exactQuotient! : (%, %) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
exactQuotient! : (%, R) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
exquo : (%, %) -> Union(%, "failed") if R has EntireRing
from EntireRing
exquo : (%, R) -> Union(%, "failed") if R has EntireRing
from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
extendedSubResultantGcd : (%, %) -> Record(gcd : %, coef1 : %, coef2 : %) if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
factor : % -> Factored(%) if R has PolynomialFactorizationExplicit
from UniqueFactorizationDomain
factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
fmecg : (%, IndexedExponents(VarSet), R, %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
gcd : (%, %) -> % if R has GcdDomain
from GcdDomain
gcd : List(%) -> % if R has GcdDomain
from GcdDomain
gcd : (R, %) -> R if R has GcdDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has GcdDomain
from PolynomialFactorizationExplicit
ground : % -> R
from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
ground? : % -> Boolean
from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
halfExtendedSubResultantGcd1 : (%, %) -> Record(gcd : %, coef1 : %) if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
halfExtendedSubResultantGcd2 : (%, %) -> Record(gcd : %, coef2 : %) if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
hash : % -> SingleInteger if VarSet has Hashable and R has Hashable
from Hashable
hashUpdate! : (HashState, %) -> HashState if VarSet has Hashable and R has Hashable
from Hashable
head : % -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
headReduce : (%, %) -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
headReduced? : (%, %) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
headReduced? : (%, List(%)) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
iexactQuo : (R, R) -> R if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
infRittWu? : (%, %) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
init : % -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
initiallyReduce : (%, %) -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
initiallyReduced? : (%, %) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
initiallyReduced? : (%, List(%)) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
isExpt : % -> Union(Record(var : VarSet, exponent : NonNegativeInteger), "failed")
from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
isPlus : % -> Union(List(%), "failed")
from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
isTimes : % -> Union(List(%), "failed")
from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
iteratedInitials : % -> List(%)
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
lastSubResultant : (%, %) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
latex : % -> String
from SetCategory
lazyPquo : (%, %) -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
lazyPquo : (%, %, VarSet) -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
lazyPrem : (%, %) -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
lazyPrem : (%, %, VarSet) -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
lazyPremWithDefault : (%, %) -> Record(coef : %, gap : NonNegativeInteger, remainder : %)
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
lazyPremWithDefault : (%, %, VarSet) -> Record(coef : %, gap : NonNegativeInteger, remainder : %)
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
lazyPseudoDivide : (%, %) -> Record(coef : %, gap : NonNegativeInteger, quotient : %, remainder : %)
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
lazyPseudoDivide : (%, %, VarSet) -> Record(coef : %, gap : NonNegativeInteger, quotient : %, remainder : %)
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
lazyResidueClass : (%, %) -> Record(polnum : %, polden : %, power : NonNegativeInteger)
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
lcm : (%, %) -> % if R has GcdDomain
from GcdDomain
lcm : List(%) -> % if R has GcdDomain
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has GcdDomain
from LeftOreRing
leadingCoefficient : (%, VarSet) -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
leadingCoefficient : % -> R
from IndexedProductCategory(R, IndexedExponents(VarSet))
leadingMonomial : % -> %
from IndexedProductCategory(R, IndexedExponents(VarSet))
leadingSupport : % -> IndexedExponents(VarSet)
from IndexedProductCategory(R, IndexedExponents(VarSet))
leadingTerm : % -> Record(k : IndexedExponents(VarSet), c : R)
from IndexedProductCategory(R, IndexedExponents(VarSet))
leastMonomial : % -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
linearExtend : (Mapping(R, IndexedExponents(VarSet)), %) -> R if R has CommutativeRing
from FreeModuleCategory(R, IndexedExponents(VarSet))
listOfTerms : % -> List(Record(k : IndexedExponents(VarSet), c : R))
from IndexedDirectProductCategory(R, IndexedExponents(VarSet))
mainCoefficients : % -> List(%)
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
mainContent : % -> % if R has GcdDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
mainMonomial : % -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
mainMonomials : % -> List(%)
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
mainPrimitivePart : % -> % if R has GcdDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
mainSquareFreePart : % -> % if R has GcdDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
mainVariable : % -> Union(VarSet, "failed")
from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
map : (Mapping(R, R), %) -> %
from IndexedProductCategory(R, IndexedExponents(VarSet))
mapExponents : (Mapping(IndexedExponents(VarSet), IndexedExponents(VarSet)), %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
mdeg : % -> NonNegativeInteger
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
minimumDegree : % -> IndexedExponents(VarSet)
from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
minimumDegree : (%, List(VarSet)) -> List(NonNegativeInteger)
from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
minimumDegree : (%, VarSet) -> NonNegativeInteger
from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
monic? : % -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
monicDivide : (%, %, VarSet) -> Record(quotient : %, remainder : %)
from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
monicModulo : (%, %) -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
monomial : (%, VarSet, NonNegativeInteger) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
monomial : (%, List(VarSet), List(NonNegativeInteger)) -> %
from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
monomial : (R, IndexedExponents(VarSet)) -> %
from IndexedProductCategory(R, IndexedExponents(VarSet))
monomial? : % -> Boolean
from IndexedProductCategory(R, IndexedExponents(VarSet))
monomials : % -> List(%)
from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
multivariate : (SparseUnivariatePolynomial(%), VarSet) -> %
from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
multivariate : (SparseUnivariatePolynomial(R), VarSet) -> %
from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
mvar : % -> VarSet
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
next_subResultant2 : (%, %, %, %) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
normalized? : (%, %) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
normalized? : (%, List(%)) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
numberOfMonomials : % -> NonNegativeInteger
from IndexedDirectProductCategory(R, IndexedExponents(VarSet))
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if VarSet has PatternMatchable(Float) and R has PatternMatchable(Float)
from PatternMatchable(Float)
patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if VarSet has PatternMatchable(Integer) and R has PatternMatchable(Integer)
from PatternMatchable(Integer)
plenaryPower : (%, PositiveInteger) -> % if R has Algebra(Fraction(Integer)) or R has CommutativeRing
from NonAssociativeAlgebra(%)
pomopo! : (%, R, IndexedExponents(VarSet), %) -> %
from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
pquo : (%, %) -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
pquo : (%, %, VarSet) -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
prem : (%, %) -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
prem : (%, %, VarSet) -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
primPartElseUnitCanonical : % -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
primPartElseUnitCanonical! : % -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
prime? : % -> Boolean if R has PolynomialFactorizationExplicit
from UniqueFactorizationDomain
primitiveMonomials : % -> List(%)
from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
primitivePart : % -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
primitivePart : (%, VarSet) -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
primitivePart! : % -> % if R has GcdDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
pseudoDivide : (%, %) -> Record(quotient : %, remainder : %)
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
quasiMonic? : % -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
recip : % -> Union(%, "failed")
from MagmaWithUnit
reduced? : (%, %) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
reduced? : (%, List(%)) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
reducedSystem : Matrix(%) -> Matrix(R)
from LinearlyExplicitOver(R)
reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
from LinearlyExplicitOver(Integer)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
from LinearlyExplicitOver(R)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
from LinearlyExplicitOver(Integer)
reductum : % -> %
from IndexedProductCategory(R, IndexedExponents(VarSet))
reductum : (%, VarSet) -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
resultant : (%, %) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
resultant : (%, %, VarSet) -> % if R has CommutativeRing
from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
retract : Polynomial(R) -> % if VarSet has ConvertibleTo(Symbol)
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
retract : Polynomial(Fraction(Integer)) -> % if R has Algebra(Fraction(Integer)) and VarSet has ConvertibleTo(Symbol)
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
retract : Polynomial(Integer) -> % if R has Algebra(Integer) and VarSet has ConvertibleTo(Symbol)
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
retract : % -> R
from RetractableTo(R)
retract : % -> VarSet
from RetractableTo(VarSet)
retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retract : % -> Integer if R has RetractableTo(Integer)
from RetractableTo(Integer)
retract : % -> SparseMultivariatePolynomial(R, VarSet)
from RetractableTo(SparseMultivariatePolynomial(R, VarSet))
retractIfCan : Polynomial(R) -> Union(%, "failed") if VarSet has ConvertibleTo(Symbol)
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
retractIfCan : Polynomial(Fraction(Integer)) -> Union(%, "failed") if R has Algebra(Fraction(Integer)) and VarSet has ConvertibleTo(Symbol)
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
retractIfCan : Polynomial(Integer) -> Union(%, "failed") if R has Algebra(Integer) and VarSet has ConvertibleTo(Symbol)
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
retractIfCan : % -> Union(R, "failed")
from RetractableTo(R)
retractIfCan : % -> Union(VarSet, "failed")
from RetractableTo(VarSet)
retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
from RetractableTo(Integer)
retractIfCan : % -> Union(SparseMultivariatePolynomial(R, VarSet), "failed")
from RetractableTo(SparseMultivariatePolynomial(R, VarSet))
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
smaller? : (%, %) -> Boolean if R has Comparable
from Comparable
solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
squareFree : % -> Factored(%) if R has GcdDomain
from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
squareFreePart : % -> % if R has GcdDomain
from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
from PolynomialFactorizationExplicit
subResultantChain : (%, %) -> List(%) if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
subResultantGcd : (%, %) -> % if R has IntegralDomain
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
supRittWu? : (%, %) -> Boolean
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
support : % -> List(IndexedExponents(VarSet))
from FreeModuleCategory(R, IndexedExponents(VarSet))
tail : % -> %
from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
totalDegree : % -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
totalDegree : (%, List(VarSet)) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
totalDegreeSorted : (%, List(VarSet)) -> NonNegativeInteger
from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
unit? : % -> Boolean if R has EntireRing
from EntireRing
unitCanonical : % -> % if R has EntireRing
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
from EntireRing
univariate : (%, VarSet) -> SparseUnivariatePolynomial(%)
from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
univariate : % -> SparseUnivariatePolynomial(R)
from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
variables : % -> List(VarSet)
from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

CoercibleTo(Polynomial(R))

Ring

CommutativeStar

ConvertibleTo(Pattern(Integer))

LinearlyExplicitOver(Integer)

SemiGroup

Hashable

VariablesCommuteWithCoefficients

RightModule(R)

Monoid

InnerEvalable(VarSet, %)

LeftModule(%)

BiModule(Fraction(Integer), Fraction(Integer))

Algebra(R)

Module(%)

IndexedDirectProductCategory(R, IndexedExponents(VarSet))

BasicType

LeftOreRing

PolynomialCategory(R, IndexedExponents(VarSet), VarSet)

noZeroDivisors

ConvertibleTo(InputForm)

SemiRing

NonAssociativeAlgebra(%)

SetCategory

IndexedProductCategory(R, IndexedExponents(VarSet))

AbelianMonoidRing(R, IndexedExponents(VarSet))

NonAssociativeSemiRing

unitsKnown

CharacteristicNonZero

PolynomialFactorizationExplicit

TwoSidedRecip

InnerEvalable(VarSet, R)

CoercibleFrom(Fraction(Integer))

NonAssociativeRing

MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)

NonAssociativeRng

BiModule(R, R)

Comparable

RetractableTo(R)

RetractableTo(VarSet)

NonAssociativeAlgebra(R)

FullyRetractableTo(R)

ConvertibleTo(Polynomial(R))

CommutativeRing

CoercibleFrom(SparseMultivariatePolynomial(R, VarSet))

AbelianSemiGroup

Rng

canonicalUnitNormal

LeftModule(Fraction(Integer))

PatternMatchable(Float)

FreeModuleCategory(R, IndexedExponents(VarSet))

FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))

CoercibleFrom(VarSet)

LeftModule(R)

IntegralDomain

RightModule(Integer)

RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)

CoercibleTo(SparseMultivariatePolynomial(R, VarSet))

CoercibleFrom(R)

PartialDifferentialRing(VarSet)

Evalable(%)

NonAssociativeAlgebra(Fraction(Integer))

RetractableTo(SparseMultivariatePolynomial(R, VarSet))

LinearlyExplicitOver(R)

EntireRing

NonAssociativeSemiRng

GcdDomain

CharacteristicZero

Algebra(Fraction(Integer))

AbelianGroup

CancellationAbelianMonoid

AbelianProductCategory(R)

MagmaWithUnit

CoercibleFrom(Integer)

AbelianMonoid

PatternMatchable(Integer)

CoercibleTo(OutputForm)

BiModule(%, %)

RetractableTo(Fraction(Integer))

Algebra(%)

SemiRng

ConvertibleTo(String)

RightModule(Fraction(Integer))

Module(R)

InnerEvalable(%, %)

FullyLinearlyExplicitOver(R)

UniqueFactorizationDomain

ConvertibleTo(Pattern(Float))

Module(Fraction(Integer))

RightModule(%)

RetractableTo(Integer)

Magma