NewSparseMultivariatePolynomial(R, VarSet)
newpoly.spad line 1315
[edit on github]
A post-facto extension for SMP in order to speed up operations related to pseudo-division and gcd
. This domain is based on the NSUP constructor which is itself a post-facto extension of the SUP constructor.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
- from RightModule(Integer)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, R) -> % if R has Field
- from AbelianMonoidRing(R, IndexedExponents(VarSet))
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : (%, VarSet) -> %
- from PartialDifferentialRing(VarSet)
- D : (%, VarSet, NonNegativeInteger) -> %
- from PartialDifferentialRing(VarSet)
- D : (%, List(VarSet)) -> %
- from PartialDifferentialRing(VarSet)
- D : (%, List(VarSet), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(VarSet)
- LazardQuotient : (%, %, NonNegativeInteger) -> % if R has IntegralDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- LazardQuotient2 : (%, %, %, NonNegativeInteger) -> % if R has IntegralDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- RittWuCompare : (%, %) -> Union(Boolean, "failed")
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if R has EntireRing
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero or % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- coefficient : (%, VarSet, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- coefficient : (%, List(VarSet), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- coefficient : (%, IndexedExponents(VarSet)) -> R
- from AbelianMonoidRing(R, IndexedExponents(VarSet))
- coefficients : % -> List(R)
- from FreeModuleCategory(R, IndexedExponents(VarSet))
- coerce : % -> % if R has CommutativeRing
- from Algebra(%)
- coerce : R -> %
- from Algebra(R)
- coerce : VarSet -> %
- from CoercibleFrom(VarSet)
- coerce : Fraction(Integer) -> % if R has RetractableTo(Fraction(Integer)) or R has Algebra(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : SparseMultivariatePolynomial(R, VarSet) -> %
- from CoercibleFrom(SparseMultivariatePolynomial(R, VarSet))
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- coerce : % -> Polynomial(R) if VarSet has ConvertibleTo(Symbol)
- from CoercibleTo(Polynomial(R))
- coerce : % -> SparseMultivariatePolynomial(R, VarSet)
- from CoercibleTo(SparseMultivariatePolynomial(R, VarSet))
- commutator : (%, %) -> %
- from NonAssociativeRng
- conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- construct : List(Record(k : IndexedExponents(VarSet), c : R)) -> %
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- constructOrdered : List(Record(k : IndexedExponents(VarSet), c : R)) -> %
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- content : (%, VarSet) -> % if R has GcdDomain
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- content : % -> R if R has GcdDomain
- from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
- convert : Polynomial(R) -> % if VarSet has ConvertibleTo(Symbol)
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- convert : Polynomial(Fraction(Integer)) -> % if R has Algebra(Fraction(Integer)) and VarSet has ConvertibleTo(Symbol)
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- convert : Polynomial(Integer) -> % if R has Algebra(Integer) and VarSet has ConvertibleTo(Symbol)
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- convert : % -> InputForm if VarSet has ConvertibleTo(InputForm) and R has ConvertibleTo(InputForm)
- from ConvertibleTo(InputForm)
- convert : % -> Pattern(Float) if VarSet has ConvertibleTo(Pattern(Float)) and R has ConvertibleTo(Pattern(Float))
- from ConvertibleTo(Pattern(Float))
- convert : % -> Pattern(Integer) if VarSet has ConvertibleTo(Pattern(Integer)) and R has ConvertibleTo(Pattern(Integer))
- from ConvertibleTo(Pattern(Integer))
- convert : % -> Polynomial(R) if VarSet has ConvertibleTo(Symbol)
- from ConvertibleTo(Polynomial(R))
- convert : % -> String if R has RetractableTo(Integer) and VarSet has ConvertibleTo(Symbol)
- from ConvertibleTo(String)
- deepestInitial : % -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- deepestTail : % -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- degree : % -> IndexedExponents(VarSet)
- from AbelianMonoidRing(R, IndexedExponents(VarSet))
- degree : (%, List(VarSet)) -> List(NonNegativeInteger)
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- degree : (%, VarSet) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- differentiate : (%, VarSet) -> %
- from PartialDifferentialRing(VarSet)
- differentiate : (%, VarSet, NonNegativeInteger) -> %
- from PartialDifferentialRing(VarSet)
- differentiate : (%, List(VarSet)) -> %
- from PartialDifferentialRing(VarSet)
- differentiate : (%, List(VarSet), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(VarSet)
- discriminant : (%, VarSet) -> % if R has CommutativeRing
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- eval : (%, %, %) -> %
- from InnerEvalable(%, %)
- eval : (%, VarSet, %) -> %
- from InnerEvalable(VarSet, %)
- eval : (%, VarSet, R) -> %
- from InnerEvalable(VarSet, R)
- eval : (%, Equation(%)) -> %
- from Evalable(%)
- eval : (%, List(%), List(%)) -> %
- from InnerEvalable(%, %)
- eval : (%, List(VarSet), List(%)) -> %
- from InnerEvalable(VarSet, %)
- eval : (%, List(VarSet), List(R)) -> %
- from InnerEvalable(VarSet, R)
- eval : (%, List(Equation(%))) -> %
- from Evalable(%)
- exactQuotient : (%, %) -> % if R has IntegralDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- exactQuotient : (%, R) -> % if R has IntegralDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- exactQuotient! : (%, %) -> % if R has IntegralDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- exactQuotient! : (%, R) -> % if R has IntegralDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- exquo : (%, %) -> Union(%, "failed") if R has EntireRing
- from EntireRing
- exquo : (%, R) -> Union(%, "failed") if R has EntireRing
- from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
- extendedSubResultantGcd : (%, %) -> Record(gcd : %, coef1 : %, coef2 : %) if R has IntegralDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- factor : % -> Factored(%) if R has PolynomialFactorizationExplicit
- from UniqueFactorizationDomain
- factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- fmecg : (%, IndexedExponents(VarSet), R, %) -> %
- from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
- gcd : (%, %) -> % if R has GcdDomain
- from GcdDomain
- gcd : List(%) -> % if R has GcdDomain
- from GcdDomain
- gcd : (R, %) -> R if R has GcdDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has GcdDomain
- from PolynomialFactorizationExplicit
- ground : % -> R
- from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
- ground? : % -> Boolean
- from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
- halfExtendedSubResultantGcd1 : (%, %) -> Record(gcd : %, coef1 : %) if R has IntegralDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- halfExtendedSubResultantGcd2 : (%, %) -> Record(gcd : %, coef2 : %) if R has IntegralDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- hash : % -> SingleInteger if VarSet has Hashable and R has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if VarSet has Hashable and R has Hashable
- from Hashable
- head : % -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- headReduce : (%, %) -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- headReduced? : (%, %) -> Boolean
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- headReduced? : (%, List(%)) -> Boolean
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- iexactQuo : (R, R) -> R if R has IntegralDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- infRittWu? : (%, %) -> Boolean
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- init : % -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- initiallyReduce : (%, %) -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- initiallyReduced? : (%, %) -> Boolean
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- initiallyReduced? : (%, List(%)) -> Boolean
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- isExpt : % -> Union(Record(var : VarSet, exponent : NonNegativeInteger), "failed")
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- isPlus : % -> Union(List(%), "failed")
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- isTimes : % -> Union(List(%), "failed")
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- iteratedInitials : % -> List(%)
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- lastSubResultant : (%, %) -> % if R has IntegralDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- latex : % -> String
- from SetCategory
- lazyPquo : (%, %) -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- lazyPquo : (%, %, VarSet) -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- lazyPrem : (%, %) -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- lazyPrem : (%, %, VarSet) -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- lazyPremWithDefault : (%, %) -> Record(coef : %, gap : NonNegativeInteger, remainder : %)
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- lazyPremWithDefault : (%, %, VarSet) -> Record(coef : %, gap : NonNegativeInteger, remainder : %)
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- lazyPseudoDivide : (%, %) -> Record(coef : %, gap : NonNegativeInteger, quotient : %, remainder : %)
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- lazyPseudoDivide : (%, %, VarSet) -> Record(coef : %, gap : NonNegativeInteger, quotient : %, remainder : %)
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- lazyResidueClass : (%, %) -> Record(polnum : %, polden : %, power : NonNegativeInteger)
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- lcm : (%, %) -> % if R has GcdDomain
- from GcdDomain
- lcm : List(%) -> % if R has GcdDomain
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has GcdDomain
- from LeftOreRing
- leadingCoefficient : (%, VarSet) -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- leadingCoefficient : % -> R
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- leadingMonomial : % -> %
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- leadingSupport : % -> IndexedExponents(VarSet)
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- leadingTerm : % -> Record(k : IndexedExponents(VarSet), c : R)
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- leastMonomial : % -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- linearExtend : (Mapping(R, IndexedExponents(VarSet)), %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, IndexedExponents(VarSet))
- listOfTerms : % -> List(Record(k : IndexedExponents(VarSet), c : R))
- from IndexedDirectProductCategory(R, IndexedExponents(VarSet))
- mainCoefficients : % -> List(%)
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- mainContent : % -> % if R has GcdDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- mainMonomial : % -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- mainMonomials : % -> List(%)
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- mainPrimitivePart : % -> % if R has GcdDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- mainSquareFreePart : % -> % if R has GcdDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- mainVariable : % -> Union(VarSet, "failed")
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- mapExponents : (Mapping(IndexedExponents(VarSet), IndexedExponents(VarSet)), %) -> %
- from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
- mdeg : % -> NonNegativeInteger
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- minimumDegree : % -> IndexedExponents(VarSet)
- from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
- minimumDegree : (%, List(VarSet)) -> List(NonNegativeInteger)
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- minimumDegree : (%, VarSet) -> NonNegativeInteger
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- monic? : % -> Boolean
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- monicDivide : (%, %, VarSet) -> Record(quotient : %, remainder : %)
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- monicModulo : (%, %) -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- monomial : (%, VarSet, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- monomial : (%, List(VarSet), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- monomial : (R, IndexedExponents(VarSet)) -> %
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- monomial? : % -> Boolean
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- monomials : % -> List(%)
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- multivariate : (SparseUnivariatePolynomial(%), VarSet) -> %
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- multivariate : (SparseUnivariatePolynomial(R), VarSet) -> %
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- mvar : % -> VarSet
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- next_subResultant2 : (%, %, %, %) -> % if R has IntegralDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- normalized? : (%, %) -> Boolean
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- normalized? : (%, List(%)) -> Boolean
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, IndexedExponents(VarSet))
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if VarSet has PatternMatchable(Float) and R has PatternMatchable(Float)
- from PatternMatchable(Float)
- patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if VarSet has PatternMatchable(Integer) and R has PatternMatchable(Integer)
- from PatternMatchable(Integer)
- plenaryPower : (%, PositiveInteger) -> % if R has Algebra(Fraction(Integer)) or R has CommutativeRing
- from NonAssociativeAlgebra(%)
- pomopo! : (%, R, IndexedExponents(VarSet), %) -> %
- from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
- pquo : (%, %) -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- pquo : (%, %, VarSet) -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- prem : (%, %) -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- prem : (%, %, VarSet) -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- primPartElseUnitCanonical : % -> % if R has IntegralDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- primPartElseUnitCanonical! : % -> % if R has IntegralDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- prime? : % -> Boolean if R has PolynomialFactorizationExplicit
- from UniqueFactorizationDomain
- primitiveMonomials : % -> List(%)
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- primitivePart : % -> % if R has GcdDomain
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- primitivePart : (%, VarSet) -> % if R has GcdDomain
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- primitivePart! : % -> % if R has GcdDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- pseudoDivide : (%, %) -> Record(quotient : %, remainder : %)
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- quasiMonic? : % -> Boolean
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reduced? : (%, %) -> Boolean
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- reduced? : (%, List(%)) -> Boolean
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- reducedSystem : Matrix(%) -> Matrix(R)
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reductum : % -> %
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- reductum : (%, VarSet) -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- resultant : (%, %) -> % if R has IntegralDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- resultant : (%, %, VarSet) -> % if R has CommutativeRing
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- retract : Polynomial(R) -> % if VarSet has ConvertibleTo(Symbol)
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- retract : Polynomial(Fraction(Integer)) -> % if R has Algebra(Fraction(Integer)) and VarSet has ConvertibleTo(Symbol)
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- retract : Polynomial(Integer) -> % if R has Algebra(Integer) and VarSet has ConvertibleTo(Symbol)
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- retract : % -> R
- from RetractableTo(R)
- retract : % -> VarSet
- from RetractableTo(VarSet)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retract : % -> SparseMultivariatePolynomial(R, VarSet)
- from RetractableTo(SparseMultivariatePolynomial(R, VarSet))
- retractIfCan : Polynomial(R) -> Union(%, "failed") if VarSet has ConvertibleTo(Symbol)
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- retractIfCan : Polynomial(Fraction(Integer)) -> Union(%, "failed") if R has Algebra(Fraction(Integer)) and VarSet has ConvertibleTo(Symbol)
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- retractIfCan : Polynomial(Integer) -> Union(%, "failed") if R has Algebra(Integer) and VarSet has ConvertibleTo(Symbol)
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(VarSet, "failed")
- from RetractableTo(VarSet)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(SparseMultivariatePolynomial(R, VarSet), "failed")
- from RetractableTo(SparseMultivariatePolynomial(R, VarSet))
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- squareFree : % -> Factored(%) if R has GcdDomain
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- squareFreePart : % -> % if R has GcdDomain
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- subResultantChain : (%, %) -> List(%) if R has IntegralDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- subResultantGcd : (%, %) -> % if R has IntegralDomain
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- supRittWu? : (%, %) -> Boolean
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- support : % -> List(IndexedExponents(VarSet))
- from FreeModuleCategory(R, IndexedExponents(VarSet))
- tail : % -> %
- from RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- totalDegree : % -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- totalDegree : (%, List(VarSet)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- totalDegreeSorted : (%, List(VarSet)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- unit? : % -> Boolean if R has EntireRing
- from EntireRing
- unitCanonical : % -> % if R has EntireRing
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
- from EntireRing
- univariate : (%, VarSet) -> SparseUnivariatePolynomial(%)
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- univariate : % -> SparseUnivariatePolynomial(R)
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- variables : % -> List(VarSet)
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CoercibleTo(Polynomial(R))
Ring
CommutativeStar
ConvertibleTo(Pattern(Integer))
LinearlyExplicitOver(Integer)
SemiGroup
Hashable
VariablesCommuteWithCoefficients
RightModule(R)
Monoid
InnerEvalable(VarSet, %)
LeftModule(%)
BiModule(Fraction(Integer), Fraction(Integer))
Algebra(R)
Module(%)
IndexedDirectProductCategory(R, IndexedExponents(VarSet))
BasicType
LeftOreRing
PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
noZeroDivisors
ConvertibleTo(InputForm)
SemiRing
NonAssociativeAlgebra(%)
SetCategory
IndexedProductCategory(R, IndexedExponents(VarSet))
AbelianMonoidRing(R, IndexedExponents(VarSet))
NonAssociativeSemiRing
unitsKnown
CharacteristicNonZero
PolynomialFactorizationExplicit
TwoSidedRecip
InnerEvalable(VarSet, R)
CoercibleFrom(Fraction(Integer))
NonAssociativeRing
MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
NonAssociativeRng
BiModule(R, R)
Comparable
RetractableTo(R)
RetractableTo(VarSet)
NonAssociativeAlgebra(R)
FullyRetractableTo(R)
ConvertibleTo(Polynomial(R))
CommutativeRing
CoercibleFrom(SparseMultivariatePolynomial(R, VarSet))
AbelianSemiGroup
Rng
canonicalUnitNormal
LeftModule(Fraction(Integer))
PatternMatchable(Float)
FreeModuleCategory(R, IndexedExponents(VarSet))
FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
CoercibleFrom(VarSet)
LeftModule(R)
IntegralDomain
RightModule(Integer)
RecursivePolynomialCategory(R, IndexedExponents(VarSet), VarSet)
CoercibleTo(SparseMultivariatePolynomial(R, VarSet))
CoercibleFrom(R)
PartialDifferentialRing(VarSet)
Evalable(%)
NonAssociativeAlgebra(Fraction(Integer))
RetractableTo(SparseMultivariatePolynomial(R, VarSet))
LinearlyExplicitOver(R)
EntireRing
NonAssociativeSemiRng
GcdDomain
CharacteristicZero
Algebra(Fraction(Integer))
AbelianGroup
CancellationAbelianMonoid
AbelianProductCategory(R)
MagmaWithUnit
CoercibleFrom(Integer)
AbelianMonoid
PatternMatchable(Integer)
CoercibleTo(OutputForm)
BiModule(%, %)
RetractableTo(Fraction(Integer))
Algebra(%)
SemiRng
ConvertibleTo(String)
RightModule(Fraction(Integer))
Module(R)
InnerEvalable(%, %)
FullyLinearlyExplicitOver(R)
UniqueFactorizationDomain
ConvertibleTo(Pattern(Float))
Module(Fraction(Integer))
RightModule(%)
RetractableTo(Integer)
Magma